Advertisement

Detection of ‘Orange Skin’ Type Surface Defects in Furniture Elements with the Use of Textural Features

  • Michał Kruk
  • Bartosz Świderski
  • Katarzyna Śmietańska
  • Jarosław Kurek
  • Leszek J. Chmielewski
  • Jarosław Górski
  • Arkadiusz Orłowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10244)

Abstract

The accuracy of detecting the orange skin surface defect in lacquered furniture elements was tested. Textural features and an SVM classifier were used. Features were selected from a set of 50 features with the bottom-up feature selection strategy driven by the Fisher measure. The features selected were the Kolmogorow-Smirnow-based features, some of the Hilbert curve-based features, some of the maximum subregions features and also some of the thresholding-based features. The Otsu thresholding and percolation-based features were all rejected. The images of size \(300\,\times \,300\) pixels cut from the original, larger images were treated as objects. There were three quality classes: very good, good and bad. In the cross-validation process where the testing sets consisted of 90 and the training sets of 910 objects the accuracies ranged from 90% to 98% and the average accuracy was 94%. The tests revealed that more research should be done on the choice of features for this problem.

Keywords

Orange skin Surface defect Detection Quality inspection Furniture Textural features Classification 

References

  1. 1.
    Chmielewski, L.J., et al.: Defect detection in furniture elements with the hough transform applied to 3D data. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. AISC, vol. 403, pp. 631–640. Springer, Cham (2016). doi: 10.1007/978-3-319-26227-7_59 CrossRefGoogle Scholar
  2. 2.
    Chmielewski, L.J., Orłowski, A., Śmietańska, K., Górski, J., Krajewski, K., Janowicz, M., Wilkowski, J., Kietlińska, K.: Detection of surface defects of type ‘Orange Skin’ in furniture elements with conventional image processing methods. In: Huang, F., Sugimoto, A. (eds.) PSIVT 2015. LNCS, vol. 9555, pp. 26–37. Springer, Cham (2016). doi: 10.1007/978-3-319-30285-0_3 CrossRefGoogle Scholar
  3. 3.
    Chmielewski, L.J., Orłowski, A., Wieczorek, G., Śmietańska, K., Górski, J.: Testing the limits of detection of the ‘Orange Skin’ defect in furniture elements with the HOG features. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS, vol. 10192, pp. 276–286. Springer, Cham (2017). doi: 10.1007/978-3-319-54430-4_27 CrossRefGoogle Scholar
  4. 4.
    Kruk, M., Świderski, B., Osowski, S., Kurek, J., et al.: Melanoma recognition using extended set of descriptors and classifiers. EURASIP J. Image Video Process. 2015(1), 43 (2015). doi:10.1186/s13640-015-0099-9 CrossRefGoogle Scholar
  5. 5.
    Kurek, J., Świderski, B., Dhahbi, S., Kruk, M., et al.: Chaos theory-based quantification of ROIs for mammogram classification. In: Tavares, J.M.R.S., Natal, J.R.M. (eds.) Computational Vision and Medical Image Processing V. Proceedings of 5th Eccomas Thematic Conference on Computational Vision and Medical Image Processing VipIMAGE 2015, pp. 187–191. CRC Press, Tenerife, Spain, 19–21 October 2015. doi:10.1201/b19241-32
  6. 6.
    Longuetaud, F., Mothe, F., Kerautret, B., et al.: Automatic knot detection and measurements from X-ray CT images of wood: a review and validation of an improved algorithm on softwood samples. Comput. Electron. Agric. 85, 77–89 (2012). doi:10.1016/j.compag.2012.03.013 CrossRefGoogle Scholar
  7. 7.
    Musat, E.C., Salca, E.A., Dinulica, F., et al.: Evaluation of color variability of oak veneers for sorting. BioResources 11(1), 573–584 (2016). doi:10.15376/biores.11.1.573-584 Google Scholar
  8. 8.
    Otsu, M.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). doi:10.1109/TSMC.1979.4310076 CrossRefGoogle Scholar
  9. 9.
    Świderski, B., Osowski, S., Kruk, M., Kurek, J.: Texture characterization based on the Kolmogorov-Smirnov distance. Expert Syst. Appl. 42(1), 503–509 (2015). doi:10.1016/j.eswa.2014.08.021 CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Michał Kruk
    • 1
  • Bartosz Świderski
    • 1
  • Katarzyna Śmietańska
    • 2
  • Jarosław Kurek
    • 1
  • Leszek J. Chmielewski
    • 1
  • Jarosław Górski
    • 2
  • Arkadiusz Orłowski
    • 1
  1. 1.Faculty of Applied Informatics and Mathematics – WZIMWarsaw University of Life Sciences – SGGWWarsawPoland
  2. 2.Faculty of Wood Technology – WTDWarsaw University of Life Sciences – SGGWWarsawPoland

Personalised recommendations