Keystroke Dynamics and Finger Knuckle Imaging Fusion for Continuous User Verification

  • Tomasz Emanuel Wesołowski
  • Rafal DorozEmail author
  • Krzysztof Wrobel
  • Hossein Safaverdi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10244)


The paper presents a novel user identity verification method based on fusion of keystroke dynamics and knuckle images analysis. In our solution the verification is performed by an ensemble of classifiers used to verify the identity of an active user. A proposed verification module works on a database which comprises of data representing keystroke dynamics and knuckle images. The usability of the introduced approach was tested experimentally. The obtained results confirm that the proposed fusion method gives better results than the use of a single biometric feature only. For this reason our method can be used for increasing a protection level of computer resources against impostors. The paper presents preliminary research conducted to assess the potential of biometric methods fusion.


Biometrics Keystroke dynamics Finger knuckle User verification 


  1. 1.
    Alsultan, A., Warwick, K.: Keystroke dynamics authentication: a survey of free-text methods. Int. J. Comput. Sci. Issues 10, 1–10 (2013)Google Scholar
  2. 2.
    Banerjee, S.P., Woodard, D.L.: Biometric authentication and identification using keystroke dynamics: a survey. J. Pattern Recogn. Res. 7, 116–139 (2012)CrossRefGoogle Scholar
  3. 3.
    Doroz, R., Wrobel, K., Porwik, P., Safaverdi, H., Senejko, M., Jezewski, J., Popielski, P., Wilczynski, S., Koprowski, R., Wrobel, Z.: A new personal verification technique using Finger-Knuckle imaging. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS, vol. 9876, pp. 515–524. Springer, Cham (2016). doi: 10.1007/978-3-319-45246-3_49 CrossRefGoogle Scholar
  4. 4.
    Iwahori, Y., Hattori, A., Adachi, Y., et al.: Automatic detection of Polyp using Hessian Filter and HOG features. Procedia Comput. Sci. 60(1), 730–739 (2015)CrossRefGoogle Scholar
  5. 5.
    Jin, J., Yang, L., Zhang, X., et al.: Vascular tree segmentation in medical images using Hessian-based multiscale filtering and level set method. Comput. Math. Meth. Med. (2013)Google Scholar
  6. 6.
    Krawczyk, B., Wozniak, M., Schaefer, G.: Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl. Soft Comput. 14, 554–562 (2014)CrossRefGoogle Scholar
  7. 7.
    Kudlacik, P., Porwik, P., Wesolowski, T.: Fuzzy approach for intrusion detection based on user’s commands. Soft Comput. 20, 2705–2719 (2016)CrossRefGoogle Scholar
  8. 8.
    Nakhmani, A., Tannenbaum, A.: A new distance measure based on generalized image normalized cross-correlation for robust video tracking and image recognition. Pattern Recogn. Lett. 34(3), 315–321 (2013)CrossRefGoogle Scholar
  9. 9.
    Nitsch, J., Klein, J., Miller, D., Sure, U., Hahn, H.K.: Automatic segmentation of the Cerebral Falx and adjacent Gyri in 2D ultrasound images. In: Handels, H., Deserno, T.M., Meinzer, H.-P., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2015. I, pp. 287–292. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46224-9_50 Google Scholar
  10. 10.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)CrossRefGoogle Scholar
  11. 11.
    Raiyn, J.: A survey of cyber attack detection strategies. Int. J. Secur. Appl. 8(1), 247–256 (2014)Google Scholar
  12. 12.
    Rybnik, M., Tabedzki, M., Adamski, M., Saeed, K.: An exploration of keystroke dynamics authentication using non-fixed text of various length. In: Proceedings of International Conference on Biometrics and Kansei Engineering (ICBAKE), pp. 245–250 (2013)Google Scholar
  13. 13.
    Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack detection research. Adv. Inf. Secur. 39, 69–90 (2008)CrossRefGoogle Scholar
  14. 14.
    Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning and Vision: Theory and Practice. Neural Information Processing. MIT Press, Cambridge (2006)Google Scholar
  15. 15.
    Teh, P.S., Teoh, A.B.J., Yue, S.: A survey of keystroke dynamics biometrics. Sci. World J. 2013, 24 (2013)CrossRefGoogle Scholar
  16. 16.
    Wesolowski, T., Palys, M., Kudlacik, P.: Computer user verification based on mouse activity analysis. Stud. Comput. Intell. 598, 61–70 (2015)Google Scholar
  17. 17.
    Wesolowski, T.E., Porwik, P., Doroz, R.: Electronic health record security based on ensemble classification of keystroke dynamics. Appl. Artif. Intell. 30, 521–540 (2016)CrossRefGoogle Scholar
  18. 18.
    Zhong, Y., Deng, Y., Jain, A.K.: Keystroke dynamics for user authentication. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 117–123 (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Tomasz Emanuel Wesołowski
    • 1
  • Rafal Doroz
    • 1
    Email author
  • Krzysztof Wrobel
    • 1
  • Hossein Safaverdi
    • 1
  1. 1.Institute of Computer ScienceUniversity of SilesiaKatowicePoland

Personalised recommendations