EMR: Extended Manifold Ranking for Saliency Detection

  • Bo LiEmail author
  • Hang Gao
  • Han Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10262)


A novel and outstanding saliency detection approach based on color features and background prior is proposed in this paper. Specifically, background prior is used in saliency detection widely, which considers the image boundaries as part of background. Then we propose an extended manifold ranking (EMR) algorithm to propagate the background prior to other image regions. Compared with GMR, EMR eliminates the negative effect of the initial assumption that non-boundary areas are all saliency regions. Furthermore, gradient boosting decision tree (GBDT) is introduced to refine the saliency map generated by EMR. The experimental results on three benchmark datasets demonstrate that our algorithm outperforms 10 state-of-the-art methods based on low-level features.


Background prior Manifold ranking EMR GBDT 



This research was supported by the National Natural Science Foundation of China (Grant Nos. 11627802, 51678249), by the Science and Technology Projects of Guangdong (2013A011403003), and by the Science and Technology Projects of Guangzhou (201508010023).


  1. 1.
    Jiang, H., Wang, J., Yuan, Z., et al.: Salient object detection: a discriminative regional feature integration approach. In: Proceedings of the CVPR, pp. 2083–2090 (2013)Google Scholar
  2. 2.
    Yang, C., Zhang, L., Lu, H., et al.: Saliency detection via graph-based manifold ranking. In: Proceedings of the CVPR, pp. 3166–3173 (2013)Google Scholar
  3. 3.
    Cheng, M.M., Zhang, G.X., et al.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: Proceedings of the CVPR, pp. 2814–2821 (2014)Google Scholar
  5. 5.
    Aytekin, C., Ozan, E.C., Kiranyaz, S., et al.: Visual saliency by extended quantum-cuts. In: Proceedings of the ICIP, pp. 1692–1696 (2015)Google Scholar
  6. 6.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Proceedings of the CVPR, pp. 1155–1162 (2013)Google Scholar
  8. 8.
    Achanta, R., Shaji, A., et al.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  9. 9.
    Achanta, R., Hemami, S., Estrada, F., et al.: Frequency-tuned salient region detection. In: Proceedings of the CVPR, pp. 1597–1604 (2009)Google Scholar
  10. 10.
    Liu, Z., Zou, W., Le, M.O.: Saliency tree: a novel saliency detection framework. IEEE Trans. Image Process. 23(5), 1937–1952 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kim, J., Han, D., Tai, Y.W., Kim, J.: Salient region detection via high-dimensional color transform. In: Proceedings of the CVPR, pp. 883–890 (2014)Google Scholar
  12. 12.
    Qin, Y., Lu, H., Xu, Y., Wang, H.: Saliency detection via cellular automata. In: Proceedings of the CVPR, pp. 110–119 (2015)Google Scholar
  13. 13.
    Zhou, L., Yang, Z., Yuan, Q., et al.: Salient region detection via integrating diffusion-based compactness and local contrast. IEEE Trans. Image Process. 24(11), 3308–3320 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tong, N., Lu, H., Xiang, R., et al.: Salient object detection via bootstrap learning. In: Proceedings of the CVPR, pp. 1884–1892 (2015)Google Scholar
  15. 15.
    Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations