Object Detection with Few Training Data: Detection of Subsiding Troughs in SAR Interferograms

  • Paweł RotterEmail author
  • Jacek Strzelczyk
  • Stanisława Porzycka-Strzelczyk
  • Claudio Feijoo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10245)


Subsiding troughs that are the result of mining activities can be detected in SAR interferograms as approximately elliptic shapes against the noisy background. Despite large areas being covered by interferogram, the number of positive samples, which can be used for automatic learning, is limited. In this paper we propose two alternative methods for the detection of subsiding troughs: the first one is designed to detect any circular shapes and does not require any learning set and the second is based on automatic learning but requires a reduced number of positive samples. The two proposed methods can support manual inspection of large areas in SAR interferograms.


Subsiding troughs SAR interferograms Gabor filter 


  1. 1.
    Weng, Q.: Remote Sensing of Impervious Surfaces. CRC Press Taylor and Francis Group, Boca Raton (2008)Google Scholar
  2. 2.
    Gupta, R.P.: Remote Sensing Geology. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Przyłucka, M., Herrera, G., Graniczny, M., Colombo, D., Bejar-Pizzaro, M.: Combination of conventional and advanced DInSAR to monitor very fast mining subsidence with TerraSAR-X Data: Bytom City (Poland). Remote Sens. 7, 5300–5328 (2015)CrossRefGoogle Scholar
  4. 4.
    Leśniak, A., Porzycka, S.: Comprehensive interpretation of satellite and surface measurements for hazard assessment on mining and post mining areas. Mineral Resour. Manage. 24, 147–159 (2008)Google Scholar
  5. 5.
    Tadeusiewicz, R.: Neural networks in mining sciences – general overview and some representative examples. Arch. Min. Sci. 60, 971–984 (2015)Google Scholar
  6. 6.
    Bała, J., Porzycka-Strzelczyk, S., Strzelczyk, J.: Subsidence troughs detection for SAR images - preliminary results. In: SGEM 2015: Informatics, Geoinformatics and Remote Sensing: 15th International Multidisciplinary Scientific Geoconference, pp. 829–836, Bulgaria (2015)Google Scholar
  7. 7.
    Campbell, F.W., Robson, J.G.: Application of fourier analysis to the visibility of gratings. J. Physiol. 197, 551–566 (1968)CrossRefGoogle Scholar
  8. 8.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 24, 1167–1186 (1991)CrossRefGoogle Scholar
  9. 9.
    Vyas, V.S., Rege, P.: Automated texture analysis with gabor filters. GVIP J. 1, 35–41 (2006)Google Scholar
  10. 10.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18, 837–842 (1996)CrossRefGoogle Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Sastry, C.S., Ravindranath, M., Pujari, A.K., Deekshatulu, B.L.: A modified Gabor function for content based image retrieval. Pattern Recognit. Lett. 28, 293–300 (2007)CrossRefGoogle Scholar
  13. 13.
    Rahman, M.H., Pickering, M.R., Frater, M.R.: Scale and rotation invariant Gabor features for texture retrieval. In: International Conference on Digital Image Computing Techniques and Applications (DICTA), pp. 602–607 (2011)Google Scholar
  14. 14.
    Manthalkar, R., Biswas, P.K., Chatterji, B.N.: Rotation invariant texture classification using even symmetric Gabor filters. Pattern Recognit. Lett. 24, 2061–2068 (2003)CrossRefGoogle Scholar
  15. 15.
    Rotter, P.: Relevance feedback based on n-tuplewise comparison and the ELECTRE methodology and an application in content-based image retrieval. Multimed. Tools Appl. 72, 667–685 (2014)CrossRefGoogle Scholar
  16. 16.
    Rotter, P.: Multimedia information retrieval based on pairwise comparison and its application to visual search. Multimed. Tools Appl. 60, 573–587 (2012)CrossRefGoogle Scholar
  17. 17.
    Rotter, P., Skulimowski, Andrzej M.J.: A new approach to interactive visual search with rbf networks based on preference modelling. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, Lotfi A., Zurada, Jacek M. (eds.) ICAISC 2008. LNCS, vol. 5097, pp. 861–873. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69731-2_82 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Paweł Rotter
    • 1
    Email author
  • Jacek Strzelczyk
    • 2
  • Stanisława Porzycka-Strzelczyk
    • 2
  • Claudio Feijoo
    • 3
    • 4
  1. 1.Department of Automatics and Biomedical EngineeringAGH-University of Science and TechnologyKrakówPoland
  2. 2.Department of Geoinformatics and Applied Computer ScienceAGH-University of Science and TechnologyKrakówPoland
  3. 3.Telecommunications CollegeTongji UniversityShanghaiChina
  4. 4.Department of Signals, Systems and RadiocommunicationsTechnical University of MadridMadridSpain

Personalised recommendations