Advertisement

A Tuning of a Fractional Order PID Controller with the Use of Particle Swarm Optimization Method

  • Krzysztof OprzędkiewiczEmail author
  • Klaudia Dziedzic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10245)

Abstract

The paper is devoted to present a new tuning method for Fractional Order PID controller dedicated to temperature control. The proposed method uses Particle Swarm Optimization algorithm. The control plant is described by transfer function with delay. Results of experiments show that the proposed approach assures the good control performance in the sense of known integral cost functions.

Keywords

Digital fractional order PID controller PSO method CFE approximation ORA approximation Temperature control  

Notes

Acknowledgements

This paper was supported by the AGH (Poland) – project no 11.11.120.815.

References

  1. 1.
    Al Aloui, M.A.: Dicretization methods of fractional parallel PID controllers. In: Proceedings of 6th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2009, pp. 327–330 (2009)Google Scholar
  2. 2.
    Arun, M.K., Biju, U., Rajagopal, N.N., Bagyaveereswaran, V.: Optimal tuning of fractional-order PID controller. In: Suresh, L.P., Panigrahi, B.K. (eds.) Proceedings of the International Conference on Soft Computing Systems. AISC, vol. 397, pp. 401–408. Springer, New Delhi (2016). doi: 10.1007/978-81-322-2671-0_38 CrossRefGoogle Scholar
  3. 3.
    Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific Series on Nonlinear Science, Series A, vol. 72. World Scientific Publishing, Singapore (2010)Google Scholar
  4. 4.
    Dorcak, L., Petras, I., Terpak, J., Zbrojovan, M.: Comparison of the methods for discrete approximation of the fractional-order operator. In: Proceedings of the ICCC 2003 Conference, High Tatras, Slovak Republic, pp. 851–856, 26–29 May 2003. arXiv:math/0306017v1
  5. 5.
    Dziedzic, K.: The tuning of fractional-order PID controller to high-order, uncertain parameter plant Master thesis prepared at AGH University in 2016 under supervision of K. Oprzędkiewicz (2016)Google Scholar
  6. 6.
    Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kennedy, J., Eberhardt, R.: Particle Swarm Optimization, pp. 1942–1948. IEEE (1995). 0-7803-2768-3/95/$4.00 0 Google Scholar
  8. 8.
    Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Merikh-Bayat, F.: Rules for selecting the parameters of oustaloup recursive approximation for the simulation of linear feedback systems containing PIλDµ controller. Commun. Nonlinear Sci. Numer. Simulat. 17, 1852–1861 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Merikh-Bayat, F., Mirebahrimi, M., Khalili, M.R.: Discrete-time fractional-order PID controller: Definition, tuning, digital realization and some applications. Int. J. Control Autom. Syst. 13(1), 81–90 (2015)CrossRefGoogle Scholar
  11. 11.
    Oprzędkiewicz, K.: A Strejc model-based, semi- fractional (SSF) transfer function model. Automatyka/Automatics 16(2), 145–154 (2012). AGH UST 2012, http://journals.bg.agh.edu.pl/AUTOMAT/2012.16.2/automat.2012.16.2.145.pdf CrossRefGoogle Scholar
  12. 12.
    Oprzędkiewicz, K., Mitkowski, W., Gawin, E.: An estimation of accuracy of oustaloup approximation. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. AISC, vol. 440, pp. 299–307. Springer, Cham (2016). doi: 10.1007/978-3-319-29357-8_27 CrossRefGoogle Scholar
  13. 13.
    Ostalczyk, P.: Discrete Fractional Calculus: Applications in Control and Image Processing. Series in Computer Vision, vol. 4. World Scientific Publishing, Singapore (2016)zbMATHGoogle Scholar
  14. 14.
    Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: Characterization and synthesis. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. I 47(1), 25–39 (2000)CrossRefGoogle Scholar
  15. 15.
    Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21(1), 69–81 (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
  17. 17.
  18. 18.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  19. 19.
    Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. In: Fractional Calculus and Applied Analysis, vol. 3(3), pp. 231–248 (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Automatics and Biomedical Engineering, Faculty of Electrotechnics Automatics, Informatics and Biomedical EngineeringAGH University of Science and TechnologyKrakówPoland

Personalised recommendations