Advertisement

Solar Event Classification Using Deep Convolutional Neural Networks

  • Ahmet Kucuk
  • Juan M. Banda
  • Rafal A. Angryk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10245)

Abstract

The recent advances in the field of neural networks, more specifically deep convolutional neural networks (CNN), have considerably improved the performance of computer vision and image recognition systems in domains such as medical imaging, object recognition, and scene characterization. In this work, we present the first attempt into bringing CNNs to the field of Solar Astronomy, with the application of solar event recognition. With the objective of advancing the state-of-the-art in the field, we compare the performance of multiple well established CNN architectures against the current methods of multiple solar event classification. To evaluate the effectiveness of deep learning in the solar image domain, we experimented with well-known architectures such as LeNet-5, CifarNet, AlexNet, and GoogLenet. We investigated the recognition of four solar event types using image regions extracted from the high-resolution full disk images of the Sun from the NASA’s Solar Dynamics Observatory (SDO) mission. This work demonstrates the feasibility of using CNNs by obtaining improved results over the conventional pattern recognition methods used in the field.

Keywords

Image classification Solar event classification Deep learning Convolutional neural networks 

References

  1. 1.
    Banda, J., Angryk, R., Martens, P.: Steps toward a large-scale solar image data analysis to differentiate solar phenomena. Sol. Phys. 288, 435–462 (2013)CrossRefGoogle Scholar
  2. 2.
    Banda, J.M., Angryk, R.A.: On the effectiveness of fuzzy clustering as a data discretization technique for large-scale classification of solar images. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2009, pp. 2019–2024. IEEE (2009)Google Scholar
  3. 3.
    Banda, J.M., Angryk, R.A.: An experimental evaluation of popular image parameters for monochromatic solar image categorization. In: FLAIRS Conference, pp. 380–385 (2010)Google Scholar
  4. 4.
    Banda, J.M., Angryk, R.A.: Selection of image parameters as the first step towards creating a CBIR system for the solar dynamics observatory. In: International Conference on Digital Image Computing: Techniques and Applications, DICTA 2010, Sydney, Australia, December 1–3, 2010, pp. 528–534 (2010)Google Scholar
  5. 5.
    Banda, J.M., Angryk, R.A.: Large-scale region-based multimedia retrieval for solar images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 649–661. Springer, Cham (2014). doi: 10.1007/978-3-319-07173-2_55 CrossRefGoogle Scholar
  6. 6.
    Banda, J.M., Angryk, R.A., Martens, P.C.: On the surprisingly accurate transfer of image parameters between medical and solar images. In: 18th IEEE International Conference on Image Processing, ICIP 2011, Brussels, Belgium, September 11–14, 2011, pp. 3669–3672 (2011)Google Scholar
  7. 7.
    Banda, J.M., Angryk, R.A., Martens, P.C.: Imagefarmer: introducing a data mining framework for the creation of large-scale content-based image retrieval systems. Int. J. Comput. Appl. 79(13), 8–13 (2013)Google Scholar
  8. 8.
    Barra, V., Delouille, V., Kretzschmar, M., Hochedez, J.F.: Fast and robust segmentation of solar euv images: algorithm and results for solar cycle 23. Astron. Astrophys. 505(1), 361–371 (2009)CrossRefGoogle Scholar
  9. 9.
    Castelluccio, M., Poggi, G., Sansone, C., Verdoliva, L.: Land use classification in remote sensing images by convolutional neural networks. CoRR abs/1508.00092 (2015)Google Scholar
  10. 10.
    Chen, C., Seff, A., Kornhauser, A.L., Xiao, J.: Deepdriving: learning affordance for direct perception in autonomous driving. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7–13, 2015, pp. 2722–2730 (2015)Google Scholar
  11. 11.
    Chen, G., Han, T.X., He, Z., Kays, R., Forrester, T.: Deep convolutional neural network based species recognition for wild animal monitoring. In: 2014 IEEE International Conference on Image Processing, ICIP 2014, Paris, France, October 27–30, 2014, pp. 858–862 (2014)Google Scholar
  12. 12.
    Chen, X., Xu, Y., Wong, D.W.K., Wong, T.Y., Liu, J.: Glaucoma detection based on deep convolutional neural network. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015, Milan, Italy, August 25–29, 2015, pp. 715–718 (2015)Google Scholar
  13. 13.
    Christe, S., Hannah, I.G., Krucker, S., McTiernan, J., Lin, R.P.: RHESSI microflare statistics. I. Flare-finding and frequency distributions. Astrophys. J. 677(2), 1385 (2008)CrossRefGoogle Scholar
  14. 14.
    Ciresan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, pp. 2852–2860 (2012)Google Scholar
  15. 15.
    Dong, Z., Pei, M., He, Y., Liu, T., Dong, Y., Jia, Y.: Vehicle type classification using unsupervised convolutional neural network. In: 22nd International Conference on Pattern Recognition, ICPR 2014, Stockholm, Sweden, August 24–28, 2014, pp. 172–177 (2014)Google Scholar
  16. 16.
    Grigis, P., Davey, A., Martens, P., Testa, P., Timmons, R., Su, Y.: SDO feature finding team: the SDO flare detective, 402.08, vol. 41, May 2010Google Scholar
  17. 17.
    Gurghian, A., Koduri, T., Bailur, S.V., Carey, K.J., Murali, V.N.: Deeplanes: end-to-end lane position estimation using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 38–45 (2016)Google Scholar
  18. 18.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, pp. 770–778 (2016)Google Scholar
  19. 19.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, MM 2014, Orlando, FL, USA, November 03–07, 2014, pp. 675–678 (2014)Google Scholar
  20. 20.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, pp. 1106–1114 (2012)Google Scholar
  21. 21.
    Kucuk, A., Banda, J.M., Angryk, R.A.: A large scale solar dynamic observatory image dataset for computer vision applications. Nature Scientific Data (2017, to be Submitted). http://lsdo.dmlab.cs.gsu.edu/
  22. 22.
    Langhoff, S.R., Straume, T.: Highlights of the space weather risks and society workshop. Space Weather 10(6) (2012)Google Scholar
  23. 23.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  24. 24.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  25. 25.
    Lemen, J.R., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., et al.: The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Dyn. Obs. 275, 17–40 (2011). SpringerCrossRefGoogle Scholar
  26. 26.
    Lin, M., Chen, Q., Yan, S.: Network in network. CoRR abs/1312.4400 (2013)Google Scholar
  27. 27.
    Martens, P., Attrill, G., Davey, A., Engell, A., Farid, S., Grigis, P., Kasper, J., Korreck, K., Saar, S., Savcheva, A., et al.: Computer vision for the solar dynamics observatory (SDO). Sol. Phys. 275(1–2), 79–113 (2012)CrossRefGoogle Scholar
  28. 28.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), June 21–24, 2010, Haifa, Israel, pp. 807–814 (2010)Google Scholar
  29. 29.
    Parlett, B.N., Scott, D.S.: The lanczos algorithm with selective orthogonalization. Math. Comput. 33(145), 217–238 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Qahwaji, R., Colak, T.: Automatic short-term solar flare prediction using machine learning and sunspot associations. Sol. Phys. 241(1), 195–211 (2007)CrossRefGoogle Scholar
  31. 31.
    Raouafi, N., Bernasconi, P.N., Georgoulis, M.K.: The sigmoid sniffer and the advanced automated solar filament detection and characterization code modules, 402.32, vol. 216, May 2010Google Scholar
  32. 32.
    Schuh, M., Angryk, R., Ganesan Pillai, K., Banda, J., Martens, P.: A large scale solar image dataset with labeled event regions. In: Proceedings of International Conference on Image Processing (ICIP), pp. 4349–4353 (2013)Google Scholar
  33. 33.
    Schuh, M.A., Angryk, R.A., Martens, P.C.: A large-scale dataset of solar event reports from automated feature recognition modules. J. Space Weather Space Clim. 6, A22 (2016)CrossRefGoogle Scholar
  34. 34.
    Schuh, M.A., Angryk, R.A., Pillai, K.G., Banda, J.M., Martens, P.C., et al.: A large-scale solar image dataset with labeled event regions. In: ICIP, pp. 4349–4353 (2013)Google Scholar
  35. 35.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)Google Scholar
  36. 36.
    Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, pp. 1–9 (2015)Google Scholar
  38. 38.
    Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23–28, 2014, pp. 1701–1708 (2014)Google Scholar
  39. 39.
    Verbeeck, C., Delouille, V., Mampaey, B., De Visscher, R.: The spoca-suite: software for extraction, characterization, and tracking of active regions and coronal holes on euv images. Astron. Astrophys. 561, A29 (2014)CrossRefGoogle Scholar
  40. 40.
    Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H.: Deep learning for identifying metastatic breast cancer. CoRR abs/1606.05718 (2016)Google Scholar
  41. 41.
    Weyand, T., Kostrikov, I., Philbin, J.: Planet - photo geolocation with convolutional neural networks. CoRR abs/1602.05314 (2016)Google Scholar
  42. 42.
    Withbroe, G.: Living with a star. Bull. Am. Astron. Soc. 32, 839 (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceGeorgia State UniversityAtlantaUSA

Personalised recommendations