Advertisement

Archive Analysis in SHADE

  • Adam ViktorinEmail author
  • Roman Senkerik
  • Michal Pluhacek
  • Tomas Kadavy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10246)

Abstract

The aim of this research paper is to analyze the current optional archive in Success-History based Adaptive Differential Evolution (SHADE) which is used during mutation. The usefulness of the archive is analyzed on CEC 2015 benchmark set of test functions where the impact of successful archive use on final test function value is studied. This paper also proposes a new version of optional archive named Enhanced Archive (EA), which is also tested on CEC 2015 benchmark set and the results are compared with the canonical version. Two research questions are discussed: Whether SHADE with EA has better performance than canonical SHADE and whether it makes a better use of the archive.

Keywords

Differential evolution SHADE Archive 

References

  1. 1.
    Storn, R., Price, K.: Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, vol. 3. ICSI, Berkeley (1995)zbMATHGoogle Scholar
  2. 2.
    Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010)CrossRefGoogle Scholar
  3. 3.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  4. 4.
    Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  5. 5.
    Brest, J., Greiner, S., Bošković, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical Benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  6. 6.
    Omran, M.G.H., Salman, A., Engelbrecht, A.P.: Self-adaptive differential evolution. In: Hao, Y., Liu, J., Wang, Y., Cheung, Y., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS, vol. 3801, pp. 192–199. Springer, Heidelberg (2005). doi: 10.1007/11596448_28 CrossRefGoogle Scholar
  7. 7.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)CrossRefGoogle Scholar
  8. 8.
    Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 482–500 (2012)CrossRefGoogle Scholar
  9. 9.
    Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)CrossRefGoogle Scholar
  10. 10.
    Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 71–78. IEEE, June 2013Google Scholar
  11. 11.
    Liang, J.J., Qu, B.Y., Suganthan, P.N., Hernández-Díaz, A.G.: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical report, 201212 (2013)Google Scholar
  12. 12.
    Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE, July 2014Google Scholar
  13. 13.
    Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical report, Nanyang Technological University, Singapore (2013)Google Scholar
  14. 14.
    Liang, J.J., Qu, B.Y., Suganthan, P.N., Chen, Q.: Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical report 201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical report, Nanyang Technological University, Singapore (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Adam Viktorin
    • 1
    Email author
  • Roman Senkerik
    • 1
  • Michal Pluhacek
    • 1
  • Tomas Kadavy
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations