Comparing Strategies for Search Space Boundaries Violation in PSO

  • Tomas KadavyEmail author
  • Michal Pluhacek
  • Adam Viktorin
  • Roman Senkerik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10246)


In this paper, we choose to compare four methods for controlling particle position when it violates the search space boundaries and the impact on the performance of Particle Swarm Optimization algorithm (PSO). The methods are: hard borders, soft borders, random position and spherical universe. The goal is to compare the performance of these methods for the classical version of PSO and popular modification – the Attractive and Repulsive Particle Swarm Optimization (ARPSO). The experiments were carried out according to CEC benchmark rules and statistically evaluated.


Particle Swarm Optimization PSO ARPSO CEC Search space Boundaries 


  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Nepomuceno, F.V., Engelbrecht, A.P.: A self-adaptive heterogeneous PSO for real-parameter optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 361–368. IEEE (2013)Google Scholar
  3. 3.
    Zhan, Z.-H., et al.: Orthogonal learning particle swarm optimization. IEEE Trans. Evol. Comput. 15(6), 832–847 (2011)CrossRefGoogle Scholar
  4. 4.
    Riget, J., Vesterstrom, J.S.: A diversity-guided particle swarm optimizer-the ARPSO. Department of Computer Science, University of Aarhus, Aarhus, Denmark, Technical report 2002–02 (2002)Google Scholar
  5. 5.
    Chen, Q., et al.: Problem definitions and evaluation criteria for CEC 2015 special session on bound constrained single-objective computationally expensive numerical optimizationGoogle Scholar
  6. 6.
    Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 303–308 (1997)Google Scholar
  7. 7.
    Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, CEC 2000, pp. 84–88. IEEE (2000)Google Scholar
  8. 8.
    Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)CrossRefzbMATHGoogle Scholar
  9. 9.
    Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tomas Kadavy
    • 1
    Email author
  • Michal Pluhacek
    • 1
  • Adam Viktorin
    • 1
  • Roman Senkerik
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations