Advertisement

Simulation of Multi-agent Systems with Alvis Toolkit

  • Marcin SzpyrkaEmail author
  • Piotr Matyasik
  • Łukasz Podolski
  • Michał Wypych
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10246)

Abstract

The paper presents a method of using the Alvis formal modelling language and related software to model and simulate multi-agent systems. The approach has been illustrated with an example of a railway traffic management system for a real train station. One of the main advantages of this approach is the possibility of including artificial intelligence (AI) systems encoded in Haskell into Alvis models. Moreover, Alvis models can be developed at the level very close to the final implementation of the corresponding real system. Thus simulation logs can be treated as a virtual prototype logs.

Keywords

Alvis language Alvis Toolkit Multi-agent systems Simulation AI systems 

References

  1. 1.
    Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: Jade: a software framework for developing multi-agent applications. lessons learned. Inf. Softw. Technol. 50(1–2), 10–21 (2008)CrossRefGoogle Scholar
  2. 2.
    Epstein, J., Black, A., Peyton-Jones, S.: Towards haskell in the cloud. SIGPLAN Not. 46(12), 118–129 (2011)CrossRefGoogle Scholar
  3. 3.
    Gutknecht, O., Ferber, J.: The MadKit agent platform architecture. In: Wagner, T., Rana, O.F. (eds.) AGENTS 2000. LNCS, vol. 1887, pp. 48–55. Springer, Heidelberg (2001). doi: 10.1007/3-540-47772-1_5 CrossRefGoogle Scholar
  4. 4.
    Idris, I.: Python Data Analysis. Packt Publishing Ltd. (2014)Google Scholar
  5. 5.
    Jasiul, B., Śliwa, J., Gleba, K., Szpyrka, M.: Identification of malware activities with rules. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the 2014 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 2, pp. 101–110. IEEE (2014).  http://dx.doi.org/10.15439/2014F265
  6. 6.
    Krzywicki, D., Faber, L., Byrski, A., Kisiel-Dorohinicki, M.: Computing agents for decision support systems. Future Gener. Comput. Syst. 37, 390–400 (2014)CrossRefGoogle Scholar
  7. 7.
    Laleci, G.B., Kabak, Y., Dogac, A., Cingil, I., Kirbas, S., Yildiz, A., Sinir, S., Ozdikis, O., Ozturk, O.: A platform for agent behavior design and multi agent orchestration. In: Odell, J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 205–220. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-30578-1_14 CrossRefGoogle Scholar
  8. 8.
    Lee, A., Ihaka, R., Triggs, C.: Advanced Statistical Modelling. Course notes for University of Auckland Paper STATS 330 (2012)Google Scholar
  9. 9.
    Marlow, S.: Parallel and concurrent programming in haskell. In: Zsók, V., Horváth, Z., Plasmeijer, R. (eds.) CEFP 2011. LNCS, vol. 7241, pp. 339–401. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32096-5_7 CrossRefGoogle Scholar
  10. 10.
    Marlow, S., Newton, R., Peyton Jones, S.: A monad for deterministic parallelism. In: Haskell 2011: Proceedings of the Fourth ACM SIGPLAN Symposium on Haskell. ACM (2011). http://simonmar.github.io/bib/papers/monad-par.pdf
  11. 11.
    North, M., Collier, N., Ozik, J., Tatara, E., Macal, C., Bragen, M., Sydelko, P.: Complex adaptive systems modeling with Repast Simphony. Complex Adapt. Syst. Model. 1(1), 3 (2013)CrossRefGoogle Scholar
  12. 12.
    O’Sullivan, B., Goerzen, J., Stewart, D.: Real World Haskell. O’Reilly Media, Sebastopol (2008)Google Scholar
  13. 13.
    Szpyrka, M.: Modelling and analysis of real-time systems with RTCP-nets. In: Kordic, V. (ed.) Petri Net, Theory and Applications, chap. 2, pp. 17–40. I-Tech Education and Publishing, Vienna (2008)Google Scholar
  14. 14.
    Szpyrka, M., Matyasik, P., Biernacki, J., Biernacka, A., Wypych, M., Kotulski, L.: Hierarchical communication diagrams. Comput. Inf. 35(1), 55–83 (2016)MathSciNetGoogle Scholar
  15. 15.
    Szpyrka, M., Matyasik, P., Mrówka, R.: Alvis - modelling language for concurrent systems. In: Bouvry, P., Gonzalez-Velez, H., Kołodziej, J. (eds.) Intelligent Decision Systems in Large-Scale Distributed Environments. SCI, vol. 362, pp. 315–341. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21271-0_15 CrossRefGoogle Scholar
  16. 16.
    Szpyrka, M., Matyasik, P., Mrówka, R., Kotulski, L.: Formal description of Alvis language with \(\alpha ^0\) system layer. Fundamenta Informaticae 129(1–2), 161–176 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (1999)Google Scholar
  18. 18.
    Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley Publishing, Chichester (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marcin Szpyrka
    • 1
    Email author
  • Piotr Matyasik
    • 1
  • Łukasz Podolski
    • 1
  • Michał Wypych
    • 1
  1. 1.Department of Applied Computer Science, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical EngineeringAGH University of Science and TechnologyKrakówPoland

Personalised recommendations