The Use of Heterogeneous Cellular Automata to Study the Capacity of the Roundabout

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10246)

Abstract

This article presents a research study analysing the impact of changing the roundabout island diameter on the roundabout capacity. The study was based on the developed Cellular Automata Model and the implemented simulation system. The developed CA Model takes into account various types of vehicles (cars, trucks and motorcycles) and various sizes of roundabouts; also, it reflects the actual technical conditions of those vehicles (acceleration and braking depending on the vehicle dimensions and function, as well as driving on the roundabout with different speeds that are adequate to the vehicle size). The study was based on the example of a two-lane roundabout with four two-lane feeder roads.

Keywords

Capacity of roundabout Cellular Automata (CA) CA roundabout model Roundabout traffic simulation 

References

  1. 1.
  2. 2.
    Transportation Research Board of the National Acad: National Cooperative Highway Research Program Report 572 - Roundabouts in the Unites States (2007)Google Scholar
  3. 3.
    Sisiopiku, V.P., Oh, H.-U.: Evaluation of roundabout performance using SIDRA. J. Transp. Eng. 127(2), 143–150 (2001)CrossRefGoogle Scholar
  4. 4.
    Wang, R., Liu, M.: A realistic cellular automata model to simulate traffic flow at urban roundabouts. In: Sunderam, V.S., Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 420–427. Springer, Heidelberg (2005). doi:10.1007/11428848_56 CrossRefGoogle Scholar
  5. 5.
    Nagel, K., Schreckenberg, M.: A cellular automata model for freeway traffic. J. Phys. I 2, 2221–2229 (1992)Google Scholar
  6. 6.
    Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Andrzejewski, G., Zając, W., Kołopieńczyk, M.: Time dependencies modelling in traffic control algorithms. In: Mikulski, J. (ed.) TST 2013. CCIS, vol. 395, pp. 1–6. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41647-7_1 CrossRefGoogle Scholar
  8. 8.
    Esser, J., Schreckenburg, M.: Microscopic simulation of urban traffic based on cellular automata. Int. J. Mod. Phys. 8(5), 1025–1036 (1997)CrossRefGoogle Scholar
  9. 9.
    Małecki, K., Iwan, S.: Development of cellular automata for simulation of the crossroads model with a traffic detection system. In: Mikulski, J. (ed.) TST 2012. CCIS, vol. 329, pp. 276–283. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34050-5_31 CrossRefGoogle Scholar
  10. 10.
    Popescu, M.C., Ranea, C., Grigoriu, M.: Solutions for traffic lights intersections control. In: Proceedings of the 10th WSEAS (2010)Google Scholar
  11. 11.
    Han, X., Sun, H.: The implementation of traffic signal light controlled by PLC. J. Changchun Inst. Opt. Fine Mech. 4, 029 (2003)Google Scholar
  12. 12.
    Kołopieńczyk, M., Andrzejewski, G., Zając, W.: Block programming technique in traffic control. In: Mikulski, J. (ed.) TST 2013. CCIS, vol. 395, pp. 75–80. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41647-7_10 CrossRefGoogle Scholar
  13. 13.
    Jaszczak, S., Małecki, K.: Hardware and software synthesis of exemplary crossroads in a modular programmable controller. Przeglad Elektrotechniczny 89(11), 121–124 (2013)Google Scholar
  14. 14.
    Macioszek, E.: Relationship between vehicle stream in the circular roadway of a one-lane roundabout and traffic volume on the roundabout at peak hour. In: Mikulski, J. (ed.) TST 2014. CCIS, vol. 471, pp. 110–119. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45317-9_12 Google Scholar
  15. 15.
    Macioszek, E., Sierpiński, G., Czapkowski, L.: Problems and issues with running the cycle traffic through the roundabouts. In: Mikulski, J. (ed.) TST 2010. CCIS, vol. 104, pp. 107–114. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16472-9_11 CrossRefGoogle Scholar
  16. 16.
    Macioszek, E.: Analysis of significance of differences between psychotechnical parameters for drivers at the entries to one-lane and turbo roundabouts in Poland. In: Sierpiński, G. (ed.) Intelligent Transport Systems and Travel Behaviour. AISC, vol. 505, pp. 149–161. Springer, Cham (2017). doi:10.1007/978-3-319-43991-4_13 CrossRefGoogle Scholar
  17. 17.
    Nagel, K., Wolf, D.E., Wagner, P., Simon, P.M.: Two-lane traffic rules for cellular automata: a systematic approach. Phys. Rev. E 58(2), 1425–1437 (1998)CrossRefGoogle Scholar
  18. 18.
    Biham, O., Middleton, A.A., Levine, D.: Self-organization and a dynamical transition in traffic-flow models. Phys. Rev. A 4(6), 6124 (1992)CrossRefGoogle Scholar
  19. 19.
    Chowdhury, D., Schadschneider, A.: Self-organization of traffic jams in cities: effects of stochastic dynamics and signal periods. Phys. Rev. E 59, 1311–1314 (1999)CrossRefGoogle Scholar
  20. 20.
    Hartman, D.: Head leading algorithm for urban traffic modeling. Positions 2, 1 (2004)Google Scholar
  21. 21.
    Belz, N.P., Aultman-Hall, L., Montague, J.: Influence of priority taking and abstaining at single-lane roundabouts using cellular automata. Transp. Res. Part C Emerg. Technol. 69, 134–149 (2016)CrossRefGoogle Scholar
  22. 22.
    Wang, R., Ruskin, H.: Modeling traffic flow at a single-lane urban roundabout. Comput. Phys. Commun. 147, 570–576 (2002)CrossRefMATHGoogle Scholar
  23. 23.
    Lakouari, N., Ez-Zahraouy, H., Benyoussef, A.: Traffic flow behavior at a single lane roundabout as compared to traffic circle. Phys. Lett. Sect. A Gen. At. Solid State Phys. 378(43), 3169–3176 (2014)MATHGoogle Scholar
  24. 24.
    Belz, N.P., Aultman-Hall, L., Lee, B.H.Y., Gårder, P.E.: An event-based framework for non-compliant driver behavior at single-lane roundabouts. Transp. Res. Rec. J. Transp. Res. Board Nat. Academies 2402, 38–46 (2014). Washington, D.C.CrossRefGoogle Scholar
  25. 25.
    Wagner, P., Nagel, K., Wolf, D.: Realistic multilane traffic rule for cellular automata. Phys. A 234, 687–698 (1997)CrossRefGoogle Scholar
  26. 26.
    Wang, R., Ruskin, Heather J.: Modelling traffic flow at a multilane intersection. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 577–586. Springer, Heidelberg (2003). doi:10.1007/3-540-44839-X_62 CrossRefGoogle Scholar
  27. 27.
    Wang, R., Ruskin, H.J.: Modelling traffic flow at multi-lane urban roundabouts. Int. J. Mod. Phys. C 17(5), 693–710 (2006)CrossRefMATHGoogle Scholar
  28. 28.
    Schroeder, B., Rouphail, N., Salamati, K., Bugg, Z.: Effect of pedestrian impedance on vehicular capacity at multilane roundabouts with consideration of crossing treatments. Transp. Res. Rec. J. Transp. Res. Board Nat. Acad. 2312(10), 14–24 (2012)CrossRefGoogle Scholar
  29. 29.
    Macioszek, E.: Geometrical determinants of car equivalents for heavy vehicles crossing circular intersections. In: Mikulski, J. (ed.) TST 2012. CCIS, vol. 329, pp. 221–228. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34050-5_25 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.West Pomeranian University of TechnologySzczecinPoland

Personalised recommendations