Advertisement

Handwriting Recognition with Extraction of Letter Fragments

  • Michal WróbelEmail author
  • Janusz T. Starczewski
  • Christian Napoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10246)

Abstract

This paper is focused on intelligent character recognition of handwritten texts. We apply elements of the handwriting movement analysis in order to calculate possibilities of primitive character fragments called strokes. The key feature rely on the processing of uncertainty in the form of fuzzy quality values starting from the identification of strokes, through the construction of words and phrases, up to future application of language filters and possible contextual recognition.

Keywords

Handwriting recognition Intelligent character recognition Letter fragments Strokes 

References

  1. 1.
    Bertini Junior, J.R., Nicoletti, M.D.C.: Enhancing constructive neural network performance using functionally expanded input data. J. Artif. Intell. Soft Comput. Res. 6(2), 119–131 (2016)CrossRefGoogle Scholar
  2. 2.
    Bilski, J., Smoląg, J.: Parallel architectures for learning the RTRN and Elman dynamic neural network. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561–2570 (2015)CrossRefGoogle Scholar
  3. 3.
    Bilski, J., Smoląg, J., Galushkin, A.I.: The parallel approach to the conjugate gradient learning algorithm for the feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 12–21. Springer, Cham (2014). doi: 10.1007/978-3-319-07173-2_2 CrossRefGoogle Scholar
  4. 4.
    Bilski, J., Wilamowski, B.M.: Parallel learning of feedforward neural networks without error backpropagation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9692, pp. 57–69. Springer, Cham (2016). doi: 10.1007/978-3-319-39378-0_6 Google Scholar
  5. 5.
    Burges, C., Ben, J., Denker, J., LeCun, Y.A.N.C.: Off line recognition of handwritten postal words using neural networks. Int. J. Pattern Recogn. Artif. Intell. 7(4), 689–704 (1993)CrossRefGoogle Scholar
  6. 6.
    Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep big simple neural nets for handwritten digit recognition. Neural Comput. 22(12), 3207–3220 (2010)CrossRefGoogle Scholar
  7. 7.
    Damaševic̆ius, R., Maskelinas, R., Venčkauskas, A., Woźniak, M.: Smartphone user identity verification using gait characteristics. Symmetry 8(10), 100:1–100:20 (2016)Google Scholar
  8. 8.
    Damaševic̆ius, R., Vasiljevas, M., Salkevicius, J., Woźniak, M.: Human activity recognition in AAL environments using random projections. Comput. Math. Methods Med. 2016, 4073584:1–4073584:17 (2016)MathSciNetGoogle Scholar
  9. 9.
    Gabryel, M.: A bag-of-features algorithm for applications using a NoSQL database. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2016. CCIS, vol. 639, pp. 332–343. Springer, Cham (2016). doi: 10.1007/978-3-319-46254-7_26 CrossRefGoogle Scholar
  10. 10.
    Gabryel, M.: The bag-of-features algorithm for practical applications using the MySQL database. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 635–646. Springer, Cham (2016). doi: 10.1007/978-3-319-39384-1_56 Google Scholar
  11. 11.
    Harmati, I., Bukovics, D., Kóczy, L.T.: Minkowski’s inequality based sensitivity analysis of fuzzy signatures. J. Artif. Intell. Soft Comput. Res. 6(4), 219–229 (2016)CrossRefGoogle Scholar
  12. 12.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  13. 13.
    Saitoh, D., Hara, K.: Mutual learning using nonlinear perceptron. J. Artif. Intell. Soft Comput. Res. 5(1), 71–77 (2015)CrossRefGoogle Scholar
  14. 14.
    Woźniak, M., Gabryel, M., Nowicki, R.K., Nowak, B.A.: An application of firefly algorithm to position traffic in NoSQL database systems. In: Kunifuji, S., Papadopoulos, G.A., Skulimowski, A.M.J., Kacprzyk, J. (eds.) Knowledge, Information and Creativity Support Systems. AISC, vol. 416, pp. 259–272. Springer, Cham (2016). doi: 10.1007/978-3-319-27478-2_18 CrossRefGoogle Scholar
  15. 15.
    Zamora-Martínez, F., Frinken, V., España-Boquera, S., Castro-Bleda, M., Fischer, A., Bunke, H.: Neural network language models for off-line handwriting recognition. Pattern Recogn. 47(4), 1642–1652 (2014)CrossRefGoogle Scholar
  16. 16.
    Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michal Wróbel
    • 1
    Email author
  • Janusz T. Starczewski
    • 1
    • 3
  • Christian Napoli
    • 2
  1. 1.Institute of Computational IntelligenceCzęstochowa University of TechnologyCzęstochowaPoland
  2. 2.Department of Mathematics and InformaticsUniversity of CataniaCataniaItaly
  3. 3.Institute of Information TechnologyRadom Academy of EconomicsRadomPoland

Personalised recommendations