Advertisement

Director Field Analysis to Explore Local White Matter Geometric Structure in Diffusion MRI

  • Jian ChengEmail author
  • Peter J. BasserEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10265)

Abstract

In diffusion MRI, a tensor field or a spherical function field, e.g., an Orientation Distribution Function (ODF) field, are estimated from measured diffusion weighted images. In this paper, inspired by microscopic theoretical treatment of phases in liquid crystals, we introduce a novel mathematical framework, called Director Field Analysis (DFA), to study local geometric structural information of white matter from the estimated tensor field or spherical function field. (1) We propose Orientational Order (OO) and Orientational Dispersion (OD) indices to describe the degree of alignment and dispersion of a spherical function in each voxel; (2) We estimate a local orthogonal coordinate frame in each voxel with anisotropic diffusion; (3) Finally, we define three indices to describe three types of orientational distortion (splay, bend, and twist) in a local spatial neighborhood, and a total distortion index to describe distortions of all three types. To our knowledge, this is the first work to quantitatively describe orientational distortion (splay, bend, and twist) in diffusion MRI. The proposed scalar indices are useful to detect local geometric changes of white matter for voxel-based or tract-based analysis in both DTI and HARDI acquisitions.

Keywords

Fractional Anisotropy Diffusion Tensor Image Tensor Field Spherical Function Orientation Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andrienko, D.: Introduction to Liquid Crystals, Bad Marienberg (2006). https://pdfs.semanticscholar.org/b241/d553a810d86fc6640cbf88b09d58ce54c57a.pdf
  2. 2.
    Basser, P.J.: New histological and physiological stains derived from diffusion-tensor MR images. Ann. N. Y. Acad. Sci. 820, 123–138 (1997)CrossRefGoogle Scholar
  3. 3.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscropy and imaging. Biophys. J. 66, 259–267 (1994)CrossRefGoogle Scholar
  4. 4.
    Cheng, J., Deriche, R., Jiang, T., Shen, D., Yap, P.-T.: Non-negative spherical deconvolution (NNSD) for estimation of fiber orientation distribution function in single-/multi-shell diffusion MRI. NeuroImage 101, 750–764 (2014)CrossRefGoogle Scholar
  5. 5.
    Kindlmann, G., Ennis, D.B., Whitaker, R.T., Westin, C.-F.: Diffusion tensor analysis with invariant gradients and rotation tangents. IEEE Trans. Med. Imaging 26(11), 1483–1499 (2007)CrossRefGoogle Scholar
  6. 6.
    Lessig, C., de Witt, T., Fiume, E.: Efficient and accurate rotation of finite spherical harmonics expansions. J. Comput. Phys. 231(2), 243–250 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Pajevic, S., Aldroubi, A., Basser, P.J.: A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. J. Magn. Reson. 154(1), 85–100 (2002)CrossRefGoogle Scholar
  8. 8.
    Pierpaoli, C., Basser, P.: Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906 (1996)CrossRefGoogle Scholar
  9. 9.
    Piuze, E., Sporring, J., Siddiqi, K.: Maurer-Cartan forms for fields on surfaces: application to heart fiber geometry. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2492–2504 (2015)CrossRefGoogle Scholar
  10. 10.
    Savadjiev, P., Kindlmann, G.L., Bouix, S., Shenton, M.E., Westin, C.-F.: Local white matter geometry from diffusion tensor gradients. NeuroImage 49, 3175–3186 (2010)CrossRefGoogle Scholar
  11. 11.
    Szczepankiewicz, F., Lasi, S., van Westen, D., Sundgren, P.C., Englund, E., Westin, C.-F., Ståhlberg, F., Lätt, J., Topgaard, D., Nilsson, M.: Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure. NeuroImage 104, 241–252 (2015)CrossRefGoogle Scholar
  12. 12.
    Savadjiev, P., Zucker, S.W., Siddiqi, K.: On the differential geometry of 3D flow patterns: generalized helicoids and diffusion MRI analysis. In: ICCV, pp. 1–8 (2007)Google Scholar
  13. 13.
    Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)CrossRefGoogle Scholar
  14. 14.
    Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.SQITS, NIBIB, NICHDNational Institutes of HealthBethesdaUSA

Personalised recommendations