Advertisement

Activity-based Process Integration in Healthcare with the User Requirements Notation

  • Malak Baslyman
  • Basmah Almoaber
  • Daniel Amyot
  • El Mostafa Bouattane
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 289)

Abstract

The healthcare sector faces important challenges in evaluating and improving its services to meet desired targets, patient needs, and government requirements. In particular, the introduction of a new process or information system in healthcare is a challenging task, especially in the absence of mature practices for requirements engineering and process modeling. Most of today’s healthcare process research is focused on mappings between existing processes and new ones without considering the different needs of multiple stakeholders and the satisfaction of organizational goals. In this paper, we introduce a novel Activity-based Process Integration (AbPI) approach that highlights integration opportunities of each new activity into current processes. AbPI exploits the User Requirements Notation (URN) language to model, analyze, and estimate the potential impact of each integration opportunity on performance objectives, organizational goals, and stakeholder satisfaction. We demonstrate the capabilities of the proposed approach with an illustrative example (increasing patient satisfaction in an Emergency Room). Preliminary results show the feasibility of the approach as well as many potential benefits over existing approaches.

Keywords

Healthcare processes Process integration Process integration analysis Process modeling Requirements engineering URN 

Notes

Acknowledgments

Malak Baslyman is sponsored by the Ministry of Education of Saudi Arabia and Basmah Almoaber is sponsored by King Khalid University, Abha, Saudi Arabia.

References

  1. 1.
    Burwitz, M., Schlieter, H., Esswein, W.: Modeling clinical pathways-design and application of a domain-specific modeling language. In: Wirtschaftsinformatik 2013, AISeL, paper 83 (2013)Google Scholar
  2. 2.
    Jun, G.T., Ward, J., Morris, Z., Clarkson, J.: Health care process modelling: which method when? Int. J. Qual. Health Care 21(3), 214–224 (2009). doi: 10.1093/intqhc/mzp016 CrossRefGoogle Scholar
  3. 3.
    Alahmadi, A., Soh, B., Ullah, A.: Automated health business process modelling and analysis for e-health system requirements elicitation. In: 18th Pacific Asia Conference on Information Systems (PACIS), AISeL, paper 213 (2014)Google Scholar
  4. 4.
    Hillary, W., Justin, G., Bharat, M., Jitendra, M.: Value based Healthcare. Adv. Manag. 9(1), 1 (2016)Google Scholar
  5. 5.
    Porter, M.E., Lee, T.H.: The strategy that will fix health care. Harvard Bus. Rev. 91(12), 24 (2013)Google Scholar
  6. 6.
    Alimadad, A., Borwein, A., Borwein, P., Dabbaghian, V., Drakes, C., Ferguson, R., Ghaseminejad, A.H., Gusev, Y., Hare, W., Li, J., Mitrovic-Minic, S., Rutherford, A., van der Waall, A., Vásárhelyi, K., Vertesi, L.: Complex Systems Modelling Group (CSMG) Modelling in Healthcare. American Mathematical Society, Providence (2010)MATHGoogle Scholar
  7. 7.
    Weiss, M., Amyot, D.: Business process modeling with URN. Int. J. E-Business Res. (IJEBR) 1(3), 63–90 (2005). doi: 10.4018/jebr.2005070104 CrossRefGoogle Scholar
  8. 8.
    Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the next ten years. J. Softw. (JSW) 6(5), 747–768 (2011). doi: 10.4304/jsw.6.5.747-768 Google Scholar
  9. 9.
    Amyot, D., et al.: Towards advanced goal model analysis with jUCMNav. In: Castano, S., Vassiliadis, P., Lakshmanan, L.V., Lee, M.L. (eds.) ER 2012. LNCS, vol. 7518, pp. 201–210. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33999-8_25. http://softwareengineering.ca/jucmnav CrossRefGoogle Scholar
  10. 10.
    Teixeira, L., Ferreira, C., Santos, B.S.: User-centered requirements engineering in health information systems: a study in the hemophilia field. Comput. Methods Programs Biomed. 106(3), 160–174 (2012). doi: 10.1016/j.cmpb.2010.10.007 CrossRefGoogle Scholar
  11. 11.
    Hayes, G.R., Lee, C.P., Dourish, P.: Organizational routines, innovation, and flexibility: the application of narrative networks to dynamic workflow. Int. J. Med. Inf. 80(8), 161–177 (2011). doi: 10.1016/j.ijmedinf.2011.01.005 CrossRefGoogle Scholar
  12. 12.
    Hübner, U., Cruel, E., Gök, M., Garthaus, M., Zimansky, M., Remmers, H., Rienhoff, O.: Requirements engineering for cross-sectional information chain models. In: Proceedings of the 11th International Congress on Nursing Informatics, paper 176. American Medical Informatics Association (2012)Google Scholar
  13. 13.
    Damas, C., Lambeau, B., van Lamsweerde, A.: Transformation operators for easier engineering of medical process models. In: 5th International Workshop on Software Engineering in Health Care (SEHC), pp. 39–45. IEEE CS (2013). doi: 10.1109/SEHC.2013.6602476
  14. 14.
    Santos, E., Castro, J., Sanchez, J., Pastor, O.: A goal-oriented approach for variability in BPMN. In: 13th Workshop on Requirements Engineering, Ecuador, pp. 17–28 (2010)Google Scholar
  15. 15.
    Kuziemsky, C., Liu, X., Peyton, L.: Leveraging goal models and performance indicators to assess health care information systems. In: 7th International Conference on the Quality of Information and Communications Technology, pp. 222–227. IEEE CS (2010). doi: 10.1109/QUATIC.2010.37
  16. 16.
    Pourshahid, A., Amyot, D., Peyton, L., Ghanavati, S., Chen, P., Weiss, M., Forster, A.J.: Business process management with the user requirements notation. Electron. Commer. Res. 9(4), 269–316 (2009). doi: 10.1007/s10660-009-9039-z CrossRefGoogle Scholar
  17. 17.
    Pourshahid, A., Mussbacher, G., Amyot, D., Weiss, M.: Requirements for a modeling language to specify and match business process improvement patterns. In: 3rd International Workshop on Model-Driven Requirements Engineering (MoDRE), pp. 10–19. IEEE (2013) doi: 10.1109/MoDRE.2013.6597259
  18. 18.
    Rungworawut, W., Senivongse, T., Cox, K.: Achieving managerial goals in business process components design using genetic algorithms. In: 5th ACIS International Conference on Software Engineering Research, Management & Applications (SERA), pp. 409–418. IEEE CS (2007). doi: 10.1109/SERA.2007.38
  19. 19.
    Bleistein, S.J., Cox, K., Verner, J., Phalp, K.T.: B-SCP: a requirements analysis framework for validating strategic alignment of organizational IT based on strategy, context, and process. Inf. Softw. Technol. 48(9), 846–868 (2006). doi: 10.1016/j.infsof.2005.12.001 CrossRefGoogle Scholar
  20. 20.
    Decreus, K., Poels, G.: A goal-oriented requirements engineering method for business processes. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 29–43. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-17722-4_3 CrossRefGoogle Scholar
  21. 21.
    Holden, R.J.: What stands in the way of technology-mediated patient safety improvements? A study of facilitators and barriers to physicians’ use of electronic health records. J. Patient Saf. 7(4), 193–203 (2011). doi: 10.1097/PTS.0b013e3182388cfa CrossRefGoogle Scholar
  22. 22.
    Vermeulen, J., Verwey, R., Hochstenbach, L.M., van der Weegen, S., Man, Y.P., de Witte, L.P.: Experiences of multidisciplinary development team members during user-centered design of telecare products and services: a qualitative study. J. Med. Internet Res. 16(5), e124 (2014). doi: 10.2196/jmir.3195 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Malak Baslyman
    • 1
  • Basmah Almoaber
    • 1
    • 2
  • Daniel Amyot
    • 1
    • 4
  • El Mostafa Bouattane
    • 3
    • 4
  1. 1.School of Computer Science and Electrical EngineeringUniversity of OttawaOttawaCanada
  2. 2.King Khalid UniversityAbhaSaudi Arabia
  3. 3.Montfort HospitalOttawaCanada
  4. 4.Institut du savoir Montfort, Hôpital MontfortOttawaCanada

Personalised recommendations