Advanced Classification of Remote Sensing High Resolution Imagery. An Application for the Management of Natural Resources

  • Edurne Ibarrola-Ulzurrun
  • Javier Marcello
  • Consuelo Gonzalo-Martin
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 718)

Abstract

In the last decades, there has been a decline in ecosystems natural resources. The objective of the study is to develop advanced image processing techniques applied to high resolution remote sensing imagery for the ecosystem conservation. The study area is focused in three ecosystems from The Canary Islands, Teide National Park, Maspalomas Natural Reserve and Corralejo and Islote de Lobos Natural Park. Different pre-processing steps have been applied in order to acquire high quality imagery. After an extensive analysis and evaluation of pansharpening techniques, Weighted Wavelet ‘à trous’ through Fractal Dimension Maps, in Teide and Maspalomas scenes, and Fast Intensity Hue Saturation, in Corralejo scene, are used, then, a RPC (Rational Polymodal Coefficients) model performs the orthorectification and finally, the atmospheric correction is carried out by the 6S algorithm. The final step is to generate marine and terrestrial thematic products using advanced classification techniques for the management of natural resources. Accurate thematic maps have already been obtained in Teide National Park. A comparative study of both pixel-based and object-based (OBIA) approaches was carried out, obtaining the most accurate thematic maps in both of them using Support Vector Machine classifier.

Keywords

Remote sensing Natural resources Image pre-processing High resolution image Pansharpening Orthorectification Atmospheric correction Classification OBIA 

References

  1. 1.
    Pagiola, S., Von Ritter, K., Bishop, J.: Assessing the economic value of ecosystem conservation. World Bank, Washington, DC. © World Bank. https://www.openknowledge.worldbank.org/handle/10986/18391 License: CC BY 3.0 IGO. (2004)
  2. 2.
    Barange, M., Harris, R.P.: Marine ecosystems and global change. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  3. 3.
    Amro, I., Mateos, J., Vega, M., Molina, R., Katsaggelos, A.K.: A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP J. Adv. Signal Process. 79 (2011)Google Scholar
  4. 4.
    Fonseca, L., Namikawa, L., Castejon, E., Carvalho, L., Pinho, C., Pagamisse, A.: Image fusion for remote sensing applications. In: Image Fusion and Its Applications. www.intechopen.com (2011)
  5. 5.
    Laben, C.A., Brower, B.V.: Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. In: Google Patents (2000)Google Scholar
  6. 6.
    Li, X., Li, L., He, M.: A novel pansharpening algorithm for WorldView-2 satellite images. In: International Conference on Industrial and Intelligent Information (ICIII 2012) (2012)Google Scholar
  7. 7.
    Li, X., Qi, W.: An effective pansharpening method for WorldView-2 satellite images. In: IEEE (ed.) International Conference on Estimation, Detection and Information Fusion (ICEDIF 2015) (2015)Google Scholar
  8. 8.
    Padwick, C., Deskevich, M., Pacifici, F., Smallwood, S.: WorldView-2 pan-sharpening. In: American Society for Photogrammetry and Remote Sensing (2010)Google Scholar
  9. 9.
    Amolins, K., Zhang, Y., Dare, P.: Wavelet based image fusion techniques—An introduction, review and comparison. ISPRS J. Photogramm. Remote Sens. 62(4), 249–263 (2007)CrossRefGoogle Scholar
  10. 10.
    Lillo-Saavedra, M., Gonzalo, C.: Spectral or spatial quality for fused satellite imagery? A trade-off solution using the wavelet à trous algorithm. Int. J. Remote Sens. 27(7), 1453–1464 (2006)CrossRefGoogle Scholar
  11. 11.
    Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., Garzelli, A., Licciardi, G., Restaino, R., Wald, L.: A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 53(5), 2565–2586 (2015)Google Scholar
  12. 12.
    Tu, T.M., Su, S.C., Shyu, H.C., Huang, P.S.: A new look at IHS-like image fusion methods. Inf. Fusion 2(3), 177–186 (2001)CrossRefGoogle Scholar
  13. 13.
    Richter, R., Kellenberger, T., Kaufmann, H.: Comparison of topographic correction methods. Remote Sens. 1(3), 184–196 (2009)CrossRefGoogle Scholar
  14. 14.
    Gao, B.C., Montes, M.J., Davis, C.O., Goetz, A.F.: Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sens. Environ. 113, S17–S24 (2009)CrossRefGoogle Scholar
  15. 15.
    Riaño, D., Chuvieco, E., Salas, J., Aguado, I.: Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types. IEEE Trans. Geosci. Remote Sens. 41(5), 1056–1061 (2003)CrossRefGoogle Scholar
  16. 16.
    Hantson, S., Chuvieco, E.: Evaluation of different topographic correction methods for Landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 13(5), 691–700 (2011)CrossRefGoogle Scholar
  17. 17.
    Agrawal, G., Sarup, J., Bhopal, M.: Comparision of QUAC and FLAASH atmospheric correction modules on EO-1 Hyperion data of Sanchi. Int. J. Adv. Eng. Sci. Technol. 4, 178–186 (2011)Google Scholar
  18. 18.
    Samadzadegan, F., Hossein, S., Pourazar, S., Hasanlou, M.: Comparative study of different atmospheric correction models on WorldView-2 imagery. In: XXIII Congress of the International Society for Photogrammetry and Remote Sensing. Melbourne (2012)Google Scholar
  19. 19.
    Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65(1), 2–16 (2010)CrossRefGoogle Scholar
  20. 20.
    Peña-Barragán, J.M., Ngugi, M.K., Plant, R.E., Six, J.: Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 115(6), 1301–1316 (2011)CrossRefGoogle Scholar
  21. 21.
    Garcia-Pedrero, A., Gonzalo-Martin, C., Fonseca-Luengo, D., Lillo-Saavedra, M.: A GEOBIA methodology for fragmented agricultural landscapes. Remote Sens. 7(1), 767–787 (2015)CrossRefGoogle Scholar
  22. 22.
    Ibarrola-Ulzurrun, E., Gonzalo-Martín, C., Marcello-Ruiz, J.: Analysis of land and marine resources by processing high resolution satellite images. In: IEEE (ed.) 2016 11th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–4 (2016)Google Scholar
  23. 23.
    Ibarrola-Ulzurrun, E., Gonzalo-Martin, C., Marcello-Ruiz, J., Garcia-Pedrero, A., Rodriguez-Esparragon, D.: Fusion of high resolution multispectral imagery in vulnerable coastal and land ecosystems. Sensors, 17(2), 228 (2017)Google Scholar
  24. 24.
    ENVI: ENVI user’s guide. Research System Inc. (2004)Google Scholar
  25. 25.
    Ibarrola-Ulzurrun, E., Gonzalo-Martin, C., Marcello-Ruiz, J.: Influence of pansharpening techniques in obtaining accurate vegetation thematic maps. In SPIE Remote Sensing. International Society for Optics and Photonics, pp. 1000515–1000515 (2016)Google Scholar
  26. 26.
    Baatz, M., Benz, U., Dehghani, S., Heynen, M., Höltje, A., Hofmann, P., Lingenfelder, I., Mimler, M., Sohlbach, M., Weber, M.: eCognition user guide. Definiens Imaging GmbH (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Edurne Ibarrola-Ulzurrun
    • 1
    • 2
  • Javier Marcello
    • 1
  • Consuelo Gonzalo-Martin
    • 2
  1. 1.Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGCLas Palmas de Gran CanariaSpain
  2. 2.Facultad de Informática, Departamento de Arquitectura y Tecnología de Sistemas InformáticosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations