Workflow Performance Profiles: Development and Analysis

  • Dariusz Król
  • Rafael Ferreira da Silva
  • Ewa Deelman
  • Vickie E. Lynch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10104)


This paper presents a method for performance profiles development of scientific workflow. It addresses issues related to: workflows execution in a parameter sweep manner, collecting performance information about each workflow task, and analysis of the collected data with statistical learning methods. The main goal of this work is to increase the understanding about the performance of studied workflows in a systematic and predictable way. The evaluation of the presented approach is based on a real scientific workflow developed by the Spallation Neutron Source - a DOE research facility at the Oak Ridge National Laboratory. The workflow executes an ensemble of molecular dynamics and neutron scattering intensity calculations to optimize a model parameter value.



This research was supported by DOE under contract #DE-SC0012636, “Panorama–Predictive Modeling and Diagnostic Monitoring of Extreme Science Workflows”. D. Król thanks to the EU FP7-ICT project PaaSage (317715) and Polish grant 3033/7PR/2014/2.


  1. 1.
    Arnold, O., et al.: Mantid - data analysis and visualization package for neutron scattering and SR experiments. Nucl. Instrum. Methods Phys. Res. Sect. A 764, 156–166 (2014)CrossRefGoogle Scholar
  2. 2.
    Borreguero, J.M., Lynch, V.E.: Molecular dynamics force-field refinement against quasi-elastic neutron scattering data. J. Chem. Theory Comput. 12(1), 9–17 (2016)CrossRefGoogle Scholar
  3. 3.
    Byun, E., Kee, Y., et al.: Estimating resource needs for time-constrained workflows. In: IEEE 4th International Conference on eScience (2008)Google Scholar
  4. 4.
    Deelman, E., Vahi, K., et al.: Pegasus, a workflow management system for science automation. Future Gener. Comput. Syst. 46, 17–35 (2015)CrossRefGoogle Scholar
  5. 5.
    Duan, R., Nadeem, F., et al.: A hybrid intelligent method for performance modeling and prediction of workflow activities in grids. In: 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (2009)Google Scholar
  6. 6.
    Huang, R., Casanova, H., et al.: Automatic resource specification generation for resource selection. In: 2007 ACM/IEEE Conference on Supercomputing, SC 2007 (2007)Google Scholar
  7. 7.
    Juve, G., Chervenak, A., et al.: Characterizing and profiling scientific workflows. Future Gener. Comput. Syst. 29(3), 682–692 (2013)CrossRefGoogle Scholar
  8. 8.
    Juve, G., Tovar, B., et al.: Practical resource monitoring for robust high throughput computing. In: 2nd Workshop on Monitoring and Analysis for High Performance Computing Systems Plus Applications (2015)Google Scholar
  9. 9.
    Król, D., Kitowski, J.: Self-scalable services in service oriented software for cost-effective data farming. Future Gener. Comput. Syst. 54, 1–15 (2016)CrossRefGoogle Scholar
  10. 10.
    Kvassay, M., et al.: A novel way of using simulations to support urban security operations. Comput. Inform. 34(6), 1201–1233 (2015)Google Scholar
  11. 11.
    Lindner, B., Smith, J.C.: Sassena—x-ray and neutron scattering calculated from molecular dynamics trajectories using massively parallel computers. Comput. Phys. Commun. 183(7), 1491–1501 (2012)CrossRefGoogle Scholar
  12. 12.
    Mayer, B., Worley, P., et al.: Climate science performance, data and productivity on titan. In: Cray User Group Conference (2015)Google Scholar
  13. 13.
  14. 14.
    FP7 PaaSage project website. Accessed 10 May 2016
  15. 15.
  16. 16.
    Phillips, J.C., Braun, R., et al.: Scalable molecular dynamics with NAMD on the IBM Blue Gene/l system. IBM J. Res. Dev. 26(1.2), 177–188 (2008)Google Scholar
  17. 17.
    Pietri, I., Juve, G., et al.: A performance model to estimate execution time of scientific workflows on the cloud. In: Proceedings of 9th Workshop on Workflows in Support of Large-Scale Science (2014)Google Scholar
  18. 18.
    Salomon-Ferrer, R., et al.: An overview of the amber biomolecular simulation package. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 3(2), 198–210 (2013)Google Scholar
  19. 19.
    Saltelli, A., Ratto, M., et al.: Global Sensitivity Analysis: The Primer. Wiley, Hoboken (2008)zbMATHGoogle Scholar
  20. 20.
    da Silva, F.R., Juve, G., et al.: Online task resource consumption prediction for scientific workflows. Parallel Process. Lett. 25(3), 1541003 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Taylor, I.J., et al.: Workflows for e-Science: Scientific Workflows for Grids. Springer, London (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dariusz Król
    • 1
    • 2
  • Rafael Ferreira da Silva
    • 2
  • Ewa Deelman
    • 2
  • Vickie E. Lynch
    • 3
  1. 1.Department of Computer Science and Academic Computer Center Cyfronet, Faculty of Computer Science, Electronics and TelecommunicationsAGH University of Science and TechnologyKrakowPoland
  2. 2.USC Information Sciences InstituteMarina Del ReyUSA
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations