Emergence of Coherent Clusters in the Ocean

  • A. D. KirwanJr.Email author
  • H. S. Huntley
  • H. Chang


Why does material tend to congregate in long coherent clusters at the surface of the ocean when it is well known that the ocean is dispersive? Here we review some recent research that addresses this question. A standard diagnostic for discerning transport pathways in incompressible 2D flows is the finite time Lyapunov exponent (FTLE). The FTLE can be expressed as the average of two rarely evaluated Lagrangian objects: the dilation and stretch rates. The stretch rate accounts for the ability of fluid shear to change the shape of fluid blobs, and for incompressible fluids it is the FTLE. However, in the real ocean and especially at submesoscales, the horizontal divergence is not negligible. This is quantified by the dilation rate, which is identically zero in 2D incompressible flow. Our analysis demonstrates that the combination of fluid dilation and stretch enhances accumulation of buoyant material along thin clusters in an otherwise dispersing ocean.


Lyapunov exponents Clustering Dilation Stretch Singular value decomposition Deformation Mixing Transport boundaries 



This work was funded in part by grant N00014-11-1-0087 from the Office of Naval Research for MURI OCEAN 3D+1 and in part by a grant from The Gulf of Mexico Research Initiative to the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment. The authors thank Karal Gregory for technical assistance in preparation of the manuscript.


  1. Aref, H. 1984. Stirring by chaotic advection. Journal of Fluid Mechanics 143(1–21). doi:10.1017/S0022112084001233.Google Scholar
  2. Ebbesmeyer, C.C., and W.J. Ingraham. 1992. Shoe spill in the north pacific. Eos 73(34): 361–365.Google Scholar
  3. Ebbesmeyer, C.C., and W.J. Ingraham. 1994. Pacific toy spill fuels ocean current pathways research. Eos 75(37): 425–430.CrossRefGoogle Scholar
  4. Huntley, H.S., B.L. Lipphardt Jr., G. Jacobs, and A.D. Kirwan Jr. 2015. Clusters, deformation, and dilation: Diagnostics for material accumulation regions. Journal of Geophysical Research, Oceans 120: 6622–6636. doi:10.1002/2015JC011036.CrossRefGoogle Scholar
  5. Jacobs, G.A., H.S. Huntley, A.D. Kirwan Jr., B.L. Lipphardt Jr., T. Campbell, T. Smith, K. Edwards, and B. Bartels. 2016. Ocean processes underlying surface clustering. Journal of Geophysical Research, Oceans 121: 180–197. doi:10.1002/2015JC011140.CrossRefGoogle Scholar
  6. Kirwan, A.D. Jr. 2006. Dynamics of “critical” trajectories. Progress in Oceanography 70: 448–465.CrossRefGoogle Scholar
  7. Okubo, A. 1971. Oceanic diffusion diagrams. Deep Sea Research 18(8): 789–802. doi:10.1016/0011-7471(71)90046-5.Google Scholar
  8. Poje, A.C., T.M. Özgökmen, B.L. Lipphardt Jr., B.K. Haus, E.H. Ryan, A.C. Haza, G.A. Jacobs, A.J.H.M. Reniers, M.J. Olascoaga, G. Novelli, A. Griffa, F.J. Beron-Vera, S.S. Chen, E. Coelho, P.J. Jogan, A.D. Kirwan Jr., H.S. Huntley, and A.J. Mariano. 2014. Submesoscale dispersion in the vicinity of the deepwater horizon spill. Proceedings of the National Academy of Sciences of the United States of America 111(35): 12693–12698.CrossRefGoogle Scholar
  9. Poje, A.C., T.M. Özgökmen, D.J. Bogucki, and A.D. Kirwan Jr. 2016. Evidence of a forward energy cascade and Kolmogorov self-similarity in submesoscale ocean surface drifter observations. Physics of Fluids: 020701-1–020701-10. Special issue for Prof. John LumleyGoogle Scholar
  10. Smith, J.N., R.M. Brown, W.J. Williams, M. Robert, R. Nelson, and S.B. Moran. 2015. Arrival of the Fukushima radioactivity plume in North American continental waters. Proceedings of the National Academy of Sciences of the United States of America 112(5): 1310–1315. doi:10.1073/pnas.1412814112.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Marine Science and PolicyUniversity of DelawareNewarkUSA

Personalised recommendations