Detecting Elderly Behavior Shift via Smart Devices and Stigmergic Receptive Fields

  • Marco Avvenuti
  • Cinzia Bernardeschi
  • Mario G. C. A. Cimino
  • Guglielmo Cola
  • Andrea Domenici
  • Gigliola Vaglini
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 192)


Smart devices are increasingly used for health monitoring. We present a novel connectionist architecture to detect elderly behavior shift from data gathered by wearable or ambient sensing technology. Behavior shift is a pattern used in many applications: it may indicate initial signs of disease or deviations in performance. In the proposed architecture, the input samples are aggregated by functional structures called trails. The trailing process is inspired by stigmergy, an insects’ coordination mechanism, and is managed by computational units called Stigmergic Receptive Fields (SRFs), which provide a (dis-)similarity measure between sample streams. This paper presents the architectural view, and summarizes the achievements related to three application case studies, i.e., indoor mobility behavior, sleep behavior, and physical activity behavior.


Elderly monitoring Smart sensing Stigmergy Neural receptive field User’s behavior shift 



This research was supported in part by the PRA 2016 project entitled “Analysis of Sensory Data: from Traditional Sensors to Social Sensors”, funded by the University of Pisa.


  1. 1.
    Hänsel, K., Wilde, N., Haddadi, H., et al.: Challenges with current wearable technology in monitoring health data and providing positive behavioural support. In: 5th EAI International Conference on Wireless Mobile Communication and Healthcare (MOBIHEALTH 2015), Brussels, Belgium, pp. 158–161 (2015)Google Scholar
  2. 2.
    Barsocchi, P., Cimino, M.G.C.A., Ferro, E., Lazzeri, A., Palumbo, F., Vaglini, G.: Monitoring elderly behavior via indoor position-based stigmergy. Pervasive Mobile Comput. 23, 26–42 (2015). Elsevier ScienceCrossRefGoogle Scholar
  3. 3.
    Boletsis, C., McCallum, S., Landmark, B.F.: The use of smartwatches for health monitoring in home-based dementia care. In: Zhou, J., Salvendy, G. (eds.) DUXU 2015. LNCS, vol. 9194, pp. 15–26. Springer, Cham (2015). doi: 10.1007/978-3-319-20913-5_2 CrossRefGoogle Scholar
  4. 4.
    Abbate, S., Avvenuti, M., Light, J.: MIMS: a minimally invasive monitoring sensor platform. IEEE Sens. J. 12(3), 677–684 (2012)CrossRefGoogle Scholar
  5. 5.
    Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., Vecchio, A.: A smartphone-based fall detection system. Pervasive Mobile Comput. 8(6), 883–899 (2012)CrossRefGoogle Scholar
  6. 6.
    Cola, G., Avvenuti, M., Vecchio, A., Yang, G.Z., Lo, B.: An on-node processing approach for anomaly detection in gait. IEEE Sens. J. 15(11), 6640–6649 (2015)CrossRefGoogle Scholar
  7. 7.
    Aztiria, A., Farhadi, G., Aghajan, H.: User behavior shift detection in ambient assisted living environments. JMIR Mhealth Uhealth 1(1), e6 (2013)CrossRefGoogle Scholar
  8. 8.
    Avvenuti, M., Cesarini, D., Cimino, M.G.C.A.: MARS, a multi-agent system for assessing rowers’ coordination via motion-based stigmergy. Sensors 13(9), 12218–12243 (2013). MDPICrossRefGoogle Scholar
  9. 9.
    Cimino, M.G.C.A., Lazzeri, A., Vaglini, G.: Improving the analysis of context-aware information via marker-based stigmergy and differential evolution. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 341–352. Springer, Cham (2015). doi: 10.1007/978-3-319-19369-4_31 CrossRefGoogle Scholar
  10. 10.
    Cimino, M.G.C.A., Pedrycz, W., Lazzerini, B., Marcelloni, F.: Using multilayer perceptrons as receptive fields in the design of neural networks. Neurocomputing 72(10–12), 2536–2548 (2009). Elsevier ScienceCrossRefGoogle Scholar
  11. 11.
    Cimino, M.G.C.A., Lazzeri, A., Vaglini, G.: Enabling swarm aggregation of position data via adaptive stigmergy: a case study in urban traffic flows. In: Proceedings of IEEE The Sixth International Conference on Information, Intelligence, Systems and Applications (IISA 2015), Greece, pp. 1–6 (2015)Google Scholar
  12. 12.
    Shinar, Z., Akselrod, S., Daga, Y., et al.: Autonomic changes during wakesleep transition: a heart rate variability based approach. Auton. Neurosci. 130(12), 17–27 (2006)CrossRefGoogle Scholar
  13. 13.
    Mendez, M.O., Matteucci, M., Castronovo, V., et al.: Sleep staging from heart rate variability: time- varying spectral features and hidden markov models. Int. J. Biomed. Eng. Technol. 3(3/4), 246–263 (2010)CrossRefGoogle Scholar
  14. 14.
    Jansen, F.M., Prins, R.G., Etman, A., et al.: Physical activity in non-frail and frail older adults. PLoS ONE 10(4), e0123168 (2015)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

Authors and Affiliations

  • Marco Avvenuti
    • 1
  • Cinzia Bernardeschi
    • 1
  • Mario G. C. A. Cimino
    • 1
  • Guglielmo Cola
    • 1
  • Andrea Domenici
    • 1
  • Gigliola Vaglini
    • 1
  1. 1.Department of Information EngineeringUniversity of PisaPisaItaly

Personalised recommendations