The Dark Matter Paradigm

  • Giuliano Gustavino
Part of the Springer Theses book series (Springer Theses)


Although the existence of Dark Matter (DM) is well-established to explain a range of astrophysical and cosmological measurements, its nature and particle properties still remain one of the greatest unsolved puzzles of particle and astroparticle physics (Bertone and Hooper, Phys Rept 405:279 (2005), [1]).


  1. 1.
    G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rept. 405, 279 (2005). [hep-ph/0404175]ADSCrossRefGoogle Scholar
  2. 2.
    G. Lemaitre, A homogeneous universe of constant mass and growing radius accounting for the radial velocity of extragalactic nebulae. Annales Soc. Sci. Brux. Ser. I Sci. Math. Astron. Phys. A 47, 49 (1927)Google Scholar
  3. 3.
    E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. 15, 168 (1929)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    R. Adam et al., [Planck Collaboration], Planck 2015 results. I. Overview of products and scientific results, arXiv:1502.01582 [astro-ph.CO]
  5. 5.
    L. Bergström, Non-baryonic dark matter: observational evidence and detection methods. Rept. Prog. Phys. 63, 793 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Planck Collaboration, Multimedia Gallery of Planck, url:
  7. 7.
    D. Hooper, Particle Dark Matter, arXiv:0901.4090 [hep-ph]
  8. 8.
    K. Griest, D. Seckel, Three exceptions in the calculation of relic abundances. Phys. Rev. D 43, 3191 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rept. 267, 195 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    P. Salati, Quintessence and the relic density of neutralinos. Phys. Lett. B 571, 121 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110 (1933)ADSzbMATHGoogle Scholar
  12. 12.
    K.G. Begeman, A.H. Broeils, R.H. Sanders, Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon. Not. Roy. Astron. Soc. 249, 523 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    NASA, ESA, D. Coe, Detailed Dark Matter Map Yields Clues to Galaxy Cluster Growth,
  14. 14.
    NASA Chandra X-ray Observatory, NASA Finds Direct Proof of Dark Matter,
  15. 15.
    D. Clowe, M. Bradac, A.H. Gonzalez, M. Markevitch, S.W. Randall, C. Jones, D. Zaritsky, A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    K.A. Olive et al., (Particle Data Group), 2015 review of particle physics. J. Chin. Phys. C, 38, 090001 (2014) and 2015 updateGoogle Scholar
  17. 17.
    N. Aghanim et al., [Planck Collaboration], Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, arXiv:1507.02704 [astro-ph.CO]
  18. 18.
    S. Dodelson, L.M. Widrow, Sterile-neutrinos as dark matter. Phys. Rev. Lett. 72, 17 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    A. Kusenko, Sterile neutrinos: the dark side of the light fermions. Phys. Rept. 481, 1 (2009), arXiv:0906.2968 [hep-ph]
  20. 20.
    K.N. Abazajian et al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [hep-ph]
  21. 21.
    R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38, 1440 (1977). doi: 10.1103/PhysRevLett.38.1440 ADSCrossRefGoogle Scholar
  22. 22.
    P. Sikivie, Axion Cosmology. Lect. Notes Phys. 741, 19 (2008), arXiv:astro-ph/0610440
  23. 23.
    E. Di Valentino, E. Giusarma, M. Lattanzi, A. Melchiorri, O. Mena, Axion cold dark matter: status after Planck and BICEP2. Phys. Rev. D 90(4), 043534 (2014), arXiv:1405.1860 [astro-ph.CO]
  24. 24.
    J.L. Feng, Dark matter candidates from particle physics and methods of detection. Ann. Rev. Astron. Astrophys. 48, 495 (2010), arXiv:1003.0904 [astro-ph.CO]
  25. 25.
    T. Marrodan Undagoitia, L. Rauch, Dark matter direct-detection experiments. J. Phys. G 43(1), 013001 (2016), arXiv:1509.08767 [physics.ins-det]
  26. 26.
    R. Bernabei, P. Belli, F. Cappella et al., Final model independent result of DAMA/LIBRA-phase1. Eur. Phys. J. C 73(12), 2648 (2013)Google Scholar
  27. 27.
    C.E. Aalseth et al., [CoGeNT Collaboration], CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors. Phys. Rev. D 88(1), 012002 (2013)Google Scholar
  28. 28.
    R. Agnese et al., [CDMS Collaboration], Silicon detector dark matter results from the final exposure of CDMS II. Phys. Rev. Lett. 111(25), 251301 (2013)Google Scholar
  29. 29.
    D.S. Akerib et al., [LUX Collaboration], Results on the spin-dependent scattering of weakly interacting massive particles on nucleons from the run 3 data of the LUX experiment. Phys. Rev. Lett. 116(16), 161302 (2016), arXiv:1602.03489 [hep-ex]
  30. 30.
    E. Aprile et al., [XENON100 Collaboration], Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. Phys. Rev. Lett. 111(2), 021301 (2013), arXiv:1301.6620 [astro-ph.CO]
  31. 31.
    C. Amole et al., [PICO Collaboration], Dark matter search results from the PICO-60 CF\(_3\)I bubble chamber. Phys. Rev. D 93(5), 052014 (2016), arXiv:1510.07754 [hep-ex]
  32. 32.
    C. Amole et al., [PICO Collaboration], Improved dark matter search results from PICO-2L Run 2. Phys. Rev. D 93(6), 061101 (2016), arXiv:1601.03729 [astro-ph.CO]
  33. 33.
    M. Klasen, M. Pohl, G. Sigl, Indirect and direct search for dark matter. Prog. Part. Nucl. Phys. 85, 1 (2015), arXiv:1507.03800 [hep-ph]
  34. 34.
    M.G. Aartsen et al., [IceCube Collaboration], Search for dark matter annihilations in the Sun with the 79-string IceCube detector. Phys. Rev. Lett. 110(13), 131302 (2013)Google Scholar
  35. 35.
    T. Tanaka et al., [Super-Kamiokande Collaboration], An Indirect Search for WIMPs in the Sun using 3109.6 days of upward-going muons in Super-Kamiokand. Astrophys. J. 742, 78 (2011), arXiv:1108.3384 [astro-ph.HE]
  36. 36.
    M. Ackermann et al., [Fermi LAT Collaboration], Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope. Phys. Rev. D 82, 092003 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    F. Calore, I. Cholis, C. Weniger, Background model systematics for the Fermi GeV excess. JCAP 1503, 038 (2015), arXiv:1409.0042 [astro-ph.CO]
  38. 38.
    A. Abramowski et al., [H.E.S.S. Collaboration], Search for dark matter annihilation signatures in H.E.S.S. observations of Dwarf Spheroidal Galaxies. Phys. Rev. D 90, 112012 (2014), arXiv:1410.2589 [astro-ph.HE]
  39. 39.
    H. Abdallah et al., [HESS Collaboration], Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S. Phys. Rev. Lett. 117(11), 111301 (2016), arXiv:1607.08142 [astro-ph.HE]
  40. 40.
    O. Adriani et al., PAMELA collaboration. Nature 458, 607 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    M. Di Mauro, F. Donato, N. Fornengo, R. Lineros, A. Vittino, Interpretation of AMS-02 electrons and positrons data. JCAP 1404, 006 (2014), arXiv:1402.0321 [astro-ph.HE]
  42. 42.
    L. Evans, P. Bryant, LHC machine. JINST 3, S08001 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    G. Aad et al., ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider. JINST 3, S08003 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    ATLAS Collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in \(pp\) collisions at \(\sqrt{s}=8\text{TeV}\) with the ATLAS detector. Eur. Phys. J. C 75(7), 299 (2015). Erratum: [Eur. Phys. J. C 75(9), 408 (2015)], arXiv:1502.01518 [hep-ex]
  45. 45.
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait, H.B. Yu, Constraints on dark matter from colliders. Phys. Rev. D 82, 116010 (2010), arXiv:1008.1783 [hep-ph]
  46. 46.
    G. Busoni, A. De Simone, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC. Phys. Lett. B 728, 412 (2014), arXiv:1307.2253 [hep-ph]
  47. 47.
    G. Busoni, A. De Simone, J. Gramling, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Part II: complete analysis for the \(s\)-channel. JCAP 1406, 060 (2014), arXiv:1402.1275 [hep-ph]
  48. 48.
    G. Busoni, A. De Simone, T. Jacques, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the \(t\)-channel. JCAP 1409, 022 (2014), arXiv:1405.3101 [hep-ph]
  49. 49.
    J. Abdallah et al., Simplified models for dark matter searches at the LHC. Phys. Dark Univ. 9–10, 8 (2015), arXiv:1506.03116 [hep-ph]
  50. 50.
    D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966 [hep-ex]
  51. 51.
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat, B. Zaldivar, Invisible \(Z^\prime \) and dark matter: LHC vs LUX constraints. JHEP 1403, 134 (2014), arXiv:1401.0221 [hep-ph]
  52. 52.
    O. Lebedev, Y. Mambrini, Axial dark matter: the case for an invisible \(Z^{\prime }\). Phys. Lett. B 734, 350 (2014), arXiv:1403.4837 [hep-ph]

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Sapienza University of RomeRomeItaly

Personalised recommendations