Advertisement

Musculoskeletal Modelling and the Physiome Project

  • Justin Fernandez
  • Ju Zhang
  • Vickie Shim
  • Jacob T. Munro
  • Massimo Sartori
  • Thor Besier
  • David G. Lloyd
  • David P. Nickerson
  • Peter Hunter
Chapter
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 578)

Abstract

This chapter presents developments as part of the International Union of Physiological Sciences (IUPS) Physiome Project. Models are multiscale, multispatial and multiphysics, hence, suitable numerical tools and platforms have been developed to address these challenges for the musculoskeletal system. Firstly, we present modelling ontologies including several markup languages used to facilitate storage, sharing and exchange of numerical models. Secondly, custom software tools, CMISS and CMGUI, are then presented in the development of anatomically based geometrical models. Customisation methods are also presented to morph generic models into subject-specific representations. Thirdly, population based modelling and statistical shape analysis methods are presented as efficient techniques that harness the power of big data and imaging databases. These allow prediction of human anatomy from minimal geometric information. Fourthly, a specific example of our framework is presented in the context of a validated orthopaedic clinical tool used for assessing osteolytic defects around implants. Finally, EMG-informed muscle modelling is presented combined with medical imaging to better understand musculoskeletal injury. The problem of NaF PET CT is used to highlight the problem of patellofemoral pain.

Notes

Acknowledgements

Many people have been involved in the Physiome Project developments described here, but we would like in particular to acknowledge the contributions from Chris Bradley, Richard Christie, Alan Garny, Poul Nielsen and Tommy Yu. The authors would like to thank all members, past and present, of the Auckland Bioengineering Institute (ABI) musculoskeletal group who have contributed to the presented works, especially Dr Kumar Mithraratne and Dr Katja Oberhofer for their work with host mesh fitting. The author would like to thank the Victorian Institute of Forensic Medicine, and J. Hislop–Jambrich, C. David L. Thomas, and J. Clement at the University of Melbourne for providing the femur CT images that made this work possible. The author is grateful for the guidance and assistance of P.M.F. Nielsen, D. Malcolm, H. Sorby, and T. Besier at the Auckland Bioengineering Institute; G.M. Treece and A.H. Gee at the University of Cambridge; and funding from the University of Auckland, the US Food and Drug Administration, and the NZ Ministry of Business, Innovation, and Employment. The authors would like to thank several colleagues who have developed various aspects of the EMG-informed modelling work over the years - Tom Buchanan and Kurt Manal from the University of Delaware; Dario Farina from Georg August University Gottingen, Monica Reggiani at the University of Padua; Claudio Pizzolato from Griffith University, and B.J. Fregly and Jonathan Walter from the University of Florida. We would also like to thank the following colleagues for their contribution to the PET/CT work Andrew Quon, Scott Delp, Garry Gold, Christine Draper and Michael Fredericson at Stanford University; and Gary Beaupr at the VA Palo Alto; Funding for part of this work has been provided by the Royal Society of New Zealand Marsden Fund, National Institutes of Health R01 EB009351-01A2 grant in the USA, and National Health and Medical Research Council grants in Australia.

References

  1. 1.
    M.J. Ackerman, The visible human project. Proc. IEEE 86(3), 504–511 (1998)CrossRefGoogle Scholar
  2. 2.
    J.L. Allen, R.R. Neptune, Three-dimensional modular control of human walking. J. Biomech. 45(12), 2157–63 (2012)CrossRefGoogle Scholar
  3. 3.
    D.C. Barratt, C.S. Chan, P.J. Edwards, G.P. Penney, M. Slomczykowski, T.J. Carter, D.J. Hawkes, Instantiation and registration of statistical shape models of the femur and pelvis using 3d ultrasound imaging. Med. Image Anal. 12, 358–374 (2008)CrossRefGoogle Scholar
  4. 4.
    F.T. Bergmann, H.M. Sauro, SBW - a modular framework for systems biology, in WSC ’06, Winter Simulation Conference, Monterey, California (2009)Google Scholar
  5. 5.
    T.F. Besier, G.E. Gold, G.S. Beaupre, S.L. Delp, A modeling framework to estimate patellofemoral joint cartilage stress in-vivo. Med. Sci. Sports Exerc. 37(11), 1924–1930 (2005)CrossRefGoogle Scholar
  6. 6.
    T.F. Besier, M. Fredericson, G.E. Gold, G.S. Beaupre, S.L. Delp, Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. J. Biomech. 42(7), 898–905 (2009)CrossRefGoogle Scholar
  7. 7.
    B.J. Bornstein, S.M. Keating, A. Jouraku, M. Hucka, LibSBML: an API Library for SBML. Bioinformatics 24(6), 880–881 (2008)CrossRefGoogle Scholar
  8. 8.
    C.P. Bradley, A.J. Pullan, P.J. Hunter, Geometric modeling of the human torso using cubic hermite elements. Ann. Biomed. Eng. 25(1), 96–111 (1997)CrossRefGoogle Scholar
  9. 9.
    W.A.M. Brekelmans, H.W. Poort, T.J.J.H. Slooff, A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop. Scand. 43(5), 301–317 (1972)CrossRefGoogle Scholar
  10. 10.
    D.J. Brooks, BioSignalML: an abstract model for physiological time-series data. Thesis, ResearchSpace@Auckland (2013)Google Scholar
  11. 11.
    D.J. Brooks, P.J. Hunter, B.H. Smaill, M.R. Titchener, BioSignalML x2014; a meta-model for biosignals, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,EMBC, pp. 5670–5673 (2011)Google Scholar
  12. 12.
    R. Bryan, P.B. Nair, M. Taylor, Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk. J. Biomech. 42(13), 2171–2176 (2009)CrossRefGoogle Scholar
  13. 13.
    R. Bryan, P.S. Mohan, A. Hopkins, F. Galloway, M. Taylor, P.B. Nair, Statistical modelling of the whole human femur incorporating geometric and material properties. Med. Eng. Phys. 32(1), 57–65 (2010)CrossRefGoogle Scholar
  14. 14.
    T.S. Buchanan, D.G. Lloyd, Muscle activity is different for humans performing static tasks which require force control and position control. Neurosci. Lett. 194(1–2), 61–64 (1995)CrossRefGoogle Scholar
  15. 15.
    T.S. Buchanan, D.G. Lloyd, K. Manal, T.F. Besier, Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20(4), 367–395 (2004)CrossRefGoogle Scholar
  16. 16.
    T.S. Buchanan, D.G. Lloyd, K. Manal, T.F. Besier, Estimation of muscle forces and joint moments using a forward-inverse dynamics model. Med. Sci. Sports Exerc. 37(11), 1911–1916 (2005)CrossRefGoogle Scholar
  17. 17.
    D.R. Carter, G.S. Beaupre, Skeletal Function and Form. Mechanobiology of Skeletal Development, Aging and Regeneration (Cambridge University Press, Cambridge, 2001)Google Scholar
  18. 18.
    D.R. Carter, M.C. Van Der Meulen, G.S. Beaupre, Mechanical factors in bone growth and development. Bone 18(1 Suppl), 5S–10S (1996)CrossRefGoogle Scholar
  19. 19.
    D.R. Carter, G.S. Beaupre, M. Wong, R.L. Smith, T.P. Andriacchi, D.J. Schurman, R.L. Smith, The mechanobiology of articular cartilage development and degeneration. Clin. Orthop. 1(427 Suppl), S69–S77 (2004)CrossRefGoogle Scholar
  20. 20.
    G.R. Christie, P.M.F. Nielsen, S.A. Blackett, C.P. Bradley, P.J. Hunter, FieldML: concepts and implementation. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 367(1895), 1869–1884 (2009)CrossRefGoogle Scholar
  21. 21.
    D.D. Cody, G.J. Gross, F.J. Hou, H.J. Spencer, S.A. Goldstein, D.P. Fyhrie, Femoral strength is better predicted by finite element models than QCT and DXA. J. Biomech. 32(10), 1013–1020 (1999)CrossRefGoogle Scholar
  22. 22.
    M.T. Cooling, V. Rouilly, G. Misirli, J. Lawson, T. Yu, J. Hallinan, A. Wipat, Standard virtual biological parts: a repository of modular modeling components for synthetic biology. Bioinformatics 26(7), 925–931 (2010)CrossRefGoogle Scholar
  23. 23.
    T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham et al., Active shape models-their training and application. Comput. Vis. Image Underst. 61, 38–59 (1995)CrossRefGoogle Scholar
  24. 24.
    D.M. Corcos, G.L. Gottlieb, M.L. Latash, G.L. Almeida, G.C. Agarwal, Electromechanical delay: an experimental artifact. J. Electromyogr. Kinesiol. 2(2), 59–68 (1992)CrossRefGoogle Scholar
  25. 25.
    M. Courtot, N. Juty, C. Knpfer, D. Waltemath, A. Zhukova, A. Drger, M. Dumontier, A. Finney, M. Golebiewski, J. Hastings, S. Hoops, S. Keating, D.B. Kell, S. Kerrien, J. Lawson, A. Lister, J. Lu, R. Machne, P. Mendes, M. Pocock, N. Rodriguez, A. Villeger, D.J. Wilkinson, S. Wimalaratne, C. Laibe, M. Hucka, N.L. Novre, Controlled vocabularies and semantics in systems biology. Mol. Syst. Biol. 7(543), 1–12 (2011)Google Scholar
  26. 26.
    A.A. Cuellar, C.M. Lloyd, P.F. Nielsen, D.P. Bullivant, D.P. Nickerson, P.J. Hunter, An overview of cellML 1.1, a biological model description language. Simulation 79(12), 740–747 (2003)CrossRefGoogle Scholar
  27. 27.
    S. Dambreville, Y. Rathi, A. Tannenbaum, A framework for image segmentation using shape models and kernel space shape priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1385–1399 (2008)CrossRefGoogle Scholar
  28. 28.
    S.J. De Serres, T.E. Milner, Wrist muscle activation patterns and stiffness associated with stable and unstable mechanical loads. Exp. Brain Res. 86(2), 451–458 (1991)CrossRefGoogle Scholar
  29. 29.
    S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)CrossRefGoogle Scholar
  30. 30.
    C.J. Donnelly, D.G. Lloyd, B.C. Elliott, J.A. Reinbolt, Optimizing whole body kinematics to minimize valgus knee loading during sidestepping: implications for ACL injury risk. J. Biomech. 45(8), 1491–1497 (2012)CrossRefGoogle Scholar
  31. 31.
    R.L. Drake (ed.), Terminologia Anatomica: International Anatomical Terminology, 2nd edn. (Thieme, Stuttgart, 2011)Google Scholar
  32. 32.
    C.E. Draper, A. Quon, M. Fredericson, T.F. Besier, S.L. Delp, G.S. Beaupre, G.E. Gold, Comparison of MRI and (18) F-NaF PET/CT in patients with patellofemoral pain. J. Magn. Reson. Imaging 36(4), 928–932 (2012)CrossRefGoogle Scholar
  33. 33.
    I.L. Dryden, K.V. Mardia, Statistical Shape Analysis, 1st edn. (Wiley, Oxford, 2001)zbMATHGoogle Scholar
  34. 34.
    J. Fernandez, M. Sartori, D. Lloyd, J. Munro, V. Shim, Bone remodelling in the natural acetabulum is influenced by muscle force-induced bone stress. Int. J. Numer. Method Biomed. Eng. 30(1), 28–41 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    J.W. Fernandez, P. Mithraratne, S.F. Thrupp, M.H. Tawhai, P.J. Hunter, Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2(3), 139–155 (2004)CrossRefGoogle Scholar
  36. 36.
    J.W. Fernandez, A. Ho, S. Walt, I.A. Anderson, P.J. Hunter, A cerebral palsy assessment tool using anatomically based geometries and free-form deformation. Biomech. Model. Mechanobiol. 4(1), 39–56 (2005)CrossRefGoogle Scholar
  37. 37.
    B.J. Fregly, T.F. Besier, D.G. Lloyd, S.L. Delp, S.A. Banks, M.G. Pandy, D.D. D’Lima, Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30(4), 503–513 (2012)CrossRefGoogle Scholar
  38. 38.
    J. Fripp, S. Crozier, S.K. Warfield, S. Ourselin, Automatic segmentation of the bone and extraction of the bone-cartilage interface from magnetic resonance images of the knee. Phys. Med. Biol. 52(6), 1617–1631 (2007)CrossRefGoogle Scholar
  39. 39.
    B.A. Garner, M.G. Pandy, The obstacle-set method for representing muscle paths in musculoskeletal models. Comput. Methods Biomech. Biomed. Eng. 3(1), 1–30 (2000)CrossRefGoogle Scholar
  40. 40.
    A. Garny, D.P. Nickerson, J. Cooper, R. Weber dos Santos, A.K. Miller, S. McKeever, P.M.F. Nielsen, P.J. Hunter, CellML and associated tools and techniques. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 366(1878), 3017–3043 (2008)CrossRefGoogle Scholar
  41. 41.
    P. Gerus, M. Sartori, T.F. Besier, B.J. Fregly, S.L. Delp, S.A. Banks, M.G. Pandy, D.D. D’Lima, D.G. Lloyd, Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J. Biomech. 46(16), 2778–2786 (2013)CrossRefGoogle Scholar
  42. 42.
    H. Gray, Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 40th edn. (Churchill-Livingstone, Elsevier, 2008)Google Scholar
  43. 43.
    J. Gregory, R.M. Aspden, Femoral geometry as a risk factor for osteoporotic hip fracture in men and women. Med. Eng. Phys. 30(10), 1275–1286 (2008)CrossRefGoogle Scholar
  44. 44.
    A.C. Guimaraes, W. Herzog, M. Hulliger, Y.T. Zhang, S. Day, Effects of muscle length on the EMG-force relationship of the cat soleus muscle studied using non-periodic stimulation of ventral root filaments. J. Exp. Biol. 193, 49–64 (1994)Google Scholar
  45. 45.
    H. Hatze, Estimation of myodynamic parameter values from observations on isometrically contracting muscle groups. Eur. J. Appl. Physiol. Occup. Physiol. 46(4), 325–338 (1981)CrossRefGoogle Scholar
  46. 46.
    T.L. Heiden, D.G. Lloyd, T.R. Ackland, Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait. Clin. Biomech. (Bristol) 24(10), 833–841 (2009)CrossRefGoogle Scholar
  47. 47.
    T. Heidlauf, O. Rohrle, Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS. Comput. Math. Methods Med. 2013, 1–14 (2013)zbMATHCrossRefGoogle Scholar
  48. 48.
    T. Heimann, H.-P. Meinzer, Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)CrossRefGoogle Scholar
  49. 49.
    R. Heine, K. Manal, T.S. Buchanan, Using Hill-type muscle models and EMG data in a forward dynamic analysis of joint moment: evaluation of critical parameters. J. Mech. Med. Biol. 3(2), 169–186 (2003)CrossRefGoogle Scholar
  50. 50.
    R. Henkel, L. Endler, A. Peters, N.L. Novre, D. Waltemath, Ranked retrieval of computational biology models. BMC Bioinform. 11(1), 1–12 (2010)CrossRefGoogle Scholar
  51. 51.
    W. Herzog, J. Sokolosky, Y.T. Zhang, A.C. Guimaraes, Emg-force relation in dynamically contracting cat plantaris muscle. J. Electromyogr. Kinesiol. 8(3), 147–155 (1998)CrossRefGoogle Scholar
  52. 52.
    W. Herzog, D. Longino, A. Clark, The role of muscles in joint adaptation and degeneration. Langenbecks Arch. Surg. 388(5), 305–315 (2003)CrossRefGoogle Scholar
  53. 53.
    A.V. Hill, The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B 126(843), 136–195 (1938)CrossRefGoogle Scholar
  54. 54.
    A.L. Hof, J. Van den Berg, EMG to force processing I: an electrical analogue of the Hill muscle model. J. Biomech. 14(11), 747–758 (1981)CrossRefGoogle Scholar
  55. 55.
    N. Hogan, Adaptive control of mechanical impedance by coactivation of antagonist muscle. IEEE Trans. Autom. Control 29(8), 681–690 (1984)zbMATHCrossRefGoogle Scholar
  56. 56.
    G. Holzer, G. Von Skrbensky, L.A. Holzer, W. Pichl, Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J. Bone Miner. Res. 24, 468–474 (2009)CrossRefGoogle Scholar
  57. 57.
    S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, U. Kummer, COPASIa COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)CrossRefGoogle Scholar
  58. 58.
    T. Hortobagyi, L. Westerkamp, S. Beam, J. Moody, J. Garry, D. Holbert, P. DeVita, Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis. Clin. Biomech. (Bristol) 20(1), 97–104 (2005)CrossRefGoogle Scholar
  59. 59.
    D.W. Howie, S.D. Neale, R. Stamenkov, M.A. McGee, D.J. Taylor, D.M. Findlay, Progression of acetabular periprosthetic osteolytic lesions measured with computed tomography. J. Bone Joint Surg. Am. 89(8), 1818–1825 (2007)Google Scholar
  60. 60.
    W.K. Hsu, B.T. Feeley, L. Krenek, D.B. Stout, A.F. Chatziioannou, J.R. Lieberman, The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model. Eur. J. Nucl. Med. Mol. Imaging 34(8), 1291–1301 (2007)CrossRefGoogle Scholar
  61. 61.
    C. Hubley-Kozey, K. Deluzio, M. Dunbar, Muscle co-activation patterns during walking in those with severe knee osteoarthritis. Clin. Biomech. (Bristol) 23(1), 71–80 (2008)CrossRefGoogle Scholar
  62. 62.
    C.L. Hubley-Kozey, K.J. Deluzio, S.C. Landry, J.S. McNutt, W.D. Stanish, Neuromuscular alterations during walking in persons with moderate knee osteoarthritis. J. Electromyogr. Kinesiol. 16(4), 365–378 (2006)CrossRefGoogle Scholar
  63. 63.
    M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J.C. Doyle, H. Kitano, A.P. Arkin, B.J. Bornstein, D. Bray, A. Cornish-Bowden, A.A. Cuellar, S. Dronov, E.D. Gilles, M. Ginkel, V. Gor, I.I. Goryanin, W.J. Hedley, T.C. Hodgman, J.H. Hofmeyr, P.J. Hunter, N.S. Juty, J.L. Kasberger, A. Kremling, U. Kummer, N. Le Novre, L.M. Loew, D. Lucio, P. Mendes, E. Minch, E.D. Mjolsness, Y. Nakayama, M.R. Nelson, P.F. Nielsen, T. Sakurada, J.C. Schaff, B.E. Shapiro, T.S. Shimizu, H.D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, J. Wang, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)CrossRefGoogle Scholar
  64. 64.
    P.A. Huijing, Important experimental factors for skeletal muscle modelling: non-linear changes of muscle length force characteristics as a function of degree of activity. Eur. J. Morphol. 34(1), 47–54 (1996)CrossRefGoogle Scholar
  65. 65.
    R. Huiskes, E.Y.S. Chao, A survey of finite element analysis in orthopedic biomechanics \(-\) the first decade. J. Biomech. 16(6), 385–409 (1983)CrossRefGoogle Scholar
  66. 66.
    R. Huiskes, S.J. Hollister, From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. J. Biomech. Eng. 115(4B), 520–527 (1993)CrossRefGoogle Scholar
  67. 67.
    P.J. Hunter, The IUPS Physiome Project: a framework for computational physiology. Prog. Biophys. Mol. Biol. 85(2–3), 551–569 (2004)CrossRefGoogle Scholar
  68. 68.
    J.J. Jacobs, K.A. Roebuck, M. Archibeck, N.J. Hallab, T.T. Glant, Osteolysis: basic science. Clin. Orthop. Relat. Res. 1(393), 71–77 (2001)CrossRefGoogle Scholar
  69. 69.
    I. Jolliffe, Principal component analysis, in Encyclopedia of Statistics in Behavioral Science, vol. 3, 1st edn., ed. by B.S. Everitt, D.C. Howell (Wiley, 2005), pp. 1580–1584Google Scholar
  70. 70.
    D. Kainmueller, H. Lamecker, S. Zachow, H.-C. Hege, An articulated statistical shape model for accurate hip joint segmentation. EMBC 2009. Annu. Int. Conf. IEEE 2009, 6345–6351 (2009)Google Scholar
  71. 71.
    J.H. Keyak, J.M. Meagher, H.B. Skinner Jr., C.D. Mote, Automated three-dimensional finite element modelling of bone: a new method. J. Biomed. Eng. 12(5), 389–397 (1990)CrossRefGoogle Scholar
  72. 72.
    J.H. Keyak, S.A. Rossi, K.A. Jones, H.B. Skinner, Prediction of femoral fracture load using automated finite element modeling. J. Biomech. 31(2), 125–133 (1998)CrossRefGoogle Scholar
  73. 73.
    J.H. Keyak, S.A. Rossi, K.A. Jones, C.M. Les, H.B. Skinner, Prediction of fracture location in the proximal femur using finite element models. Med. Eng. Phys. 23(9), 657–664 (2001)CrossRefGoogle Scholar
  74. 74.
    R. Lim, F.H. Fahey, L.A. Drubach, L.P. Connolly, S.T. Treves, Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J. Pediatr. Orthop. 27(3), 277–282 (2007)CrossRefGoogle Scholar
  75. 75.
    C.M. Lloyd, J.R. Lawson, P.J. Hunter, P.F. Nielsen, The CellML Model Repository. Bioinformatics 24(18), 2122–2123 (2008)CrossRefGoogle Scholar
  76. 76.
    D.G. Lloyd, T.F. Besier, An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36(6), 765–776 (2003)CrossRefGoogle Scholar
  77. 77.
    D.G. Lloyd, T.S. Buchanan, Strategies of muscular support of varus and valgus isometric loads at the human knee. J. Biomech. 34(10), 1257–1267 (2001)CrossRefGoogle Scholar
  78. 78.
    A.C. Looker, T.J. Beck, E.S. Orwoll, Does body size account for gender differences in femur bone density and geometry? J. Bone Miner. Res. 16, 1291–1299 (2001)CrossRefGoogle Scholar
  79. 79.
    D.B. Mach, S.D. Rogers, M.C. Sabino, N.M. Luger, M.J. Schwei, J.D. Pomonis, C.P. Keyser, D.R. Clohisy, D.J. Adams, P. O’Leary, P.W. Mantyh, Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113(1), 155–166 (2002)CrossRefGoogle Scholar
  80. 80.
    K. Manal, T.S. Buchanan, A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms. J. Biomech. 36(8), 1197–1202 (2003)CrossRefGoogle Scholar
  81. 81.
    P.M. Mayhew, C.D.L. Thomas, J.G. Clement, N. Loveridge, T.J. Beck, W. Bonfield, C.J. Burgoyne, J. Reeve, Relation between age, femoral neck cortical stability, and hip fracture risk. The Lancet 366, 129–135 (2005)CrossRefGoogle Scholar
  82. 82.
    A.K. Miller, J. Marsh, A. Reeve, A. Garny, R. Britten, M. Halstead, J. Cooper, D.P. Nickerson, P.F. Nielsen, An overview of the CellML API and its implementation. BMC Bioinform. 11(178), 1–12 (2010)Google Scholar
  83. 83.
    H.S. Milner-Brown, R.B. Stein, R. Yemm, Changes in firing rate of human motor units during linearly changing voluntary contractions. J. Physiol. 230(2), 371–390 (1973)CrossRefGoogle Scholar
  84. 84.
    T. Miyazaki, M. Wada, H. Kawahara, M. Sato, H. Baba, S. Shimada, Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 61(7), 617–622 (2002)CrossRefGoogle Scholar
  85. 85.
    J.T. Munro, I.A. Anderson, C.G. Walker, V.B. Shim, Finite element analysis of retroacetabular osteolytic defects following total hip replacement. J. Biomech. 46(14), 2529–2533 (2013)CrossRefGoogle Scholar
  86. 86.
    T. Nakamura, C.H. Turner, T. Yoshikawa, C.W. Slemenda, M. Peacock, D.B. Burr, Y. Mizuno, H. Orimo, Y. Ouchi, C.C. Johnston Jr., Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J. Bone Miner. Res. 9, 1071–1076 (1994)CrossRefGoogle Scholar
  87. 87.
    M.L. Neal, M.T. Cooling, L.P. Smith, C.T. Thompson, H.M. Sauro, B.E. Carlson, D.L. Cook, J.H. Gennari, A reappraisal of how to build modular, reusable models of biological systems. PLoS Comput. Biol. 10(10), 1–7 (2014)CrossRefGoogle Scholar
  88. 88.
    R.R. Neptune, D.J. Clark, S.A. Kautz, Modular control of human walking: a simulation study. J. Biomech. 42(9), 1282–1287 (2009)CrossRefGoogle Scholar
  89. 89.
    D. Nickerson, M. Nash, P. Nielsen, N. Smith, P. Hunter, Computational multiscale modeling in the iups physiome project: modeling cardiac electromechanics. IBM J. Res. Dev. 50(6), 617–630 (2006)CrossRefGoogle Scholar
  90. 90.
    D.P. Nickerson, J.R. Terkildsen, K.L. Hamilton, P.J. Hunter, A tool for multi-scale modelling of the renal nephron. Interface Focus 1(3), 417–425 (2011)CrossRefGoogle Scholar
  91. 91.
    N.L. Novre, A. Finney, M. Hucka, U.S. Bhalla, F. Campagne, J. Collado-Vides, E.J. Crampin, M. Halstead, E. Klipp, P. Mendes, P. Nielsen, H. Sauro, B. Shapiro, J.L. Snoep, H.D. Spence, B.L. Wanner, Minimum information requested in the annotation of biochemical models (MIRIAM). Nat. Biotechnol. 23(12), 1509–1515 (2005)CrossRefGoogle Scholar
  92. 92.
    N.L. Novre, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri, L. Li, H. Sauro, M. Schilstra, B. Shapiro, J.L. Snoep, M. Hucka, Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34(suppl 1), D689–D691 (2006)CrossRefGoogle Scholar
  93. 93.
    K. Oberhofer, K. Mithraratne, N.S. Stott et al., Anatomically-based musculoskeletal modeling: prediction and validation of muscle deformation during walking. Vis. Comput. 25, 843 (2009). doi: 10.1007/s00371-009-0314-8
  94. 94.
    R.E. Outerbridge, The etiology of chondromalacia patellae. J. Bone Joint. Surg. Br. 43–B, 752–757 (1961)Google Scholar
  95. 95.
    J. Partanen, T. Jms, P. Jalovaara, Influence of the upper femur and pelvic geometry on the risk and type of hip fractures. J. Bone Miner. Res. 16, 1540–1546 (2001)CrossRefGoogle Scholar
  96. 96.
    M. Peacock, K.A. Buckwalter, S. Persohn, T.N. Hangartner, M.J. Econs, S. Hui, Race and sex differences in bone mineral density and geometry at the femur. Bone 45, 218–225 (2009)CrossRefGoogle Scholar
  97. 97.
    D.R. Pedersen, R.A. Brand, C. Cheng, J.S. Arora, Direct comparison of muscle force predictions using linear and nonlinear programming. J. Biomech. Eng. 109(3), 192–199 (1987)CrossRefGoogle Scholar
  98. 98.
    D.A. Pierce, D.L. Preston, Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat. Res. 154, 178–186 (2000)CrossRefGoogle Scholar
  99. 99.
    R.P. Pitto, A. Hayward, C. Walker, V.B. Shim, Femoral bone density changes after total hip arthroplasty with uncemented taper-design stem: a five year follow-up study. Int. Orthop. 34(6), 783–787 (2010)CrossRefGoogle Scholar
  100. 100.
    J.R. Potvin, R.W. Norman, S.M. McGill, Mechanically corrected emg for the continuous estimation of erector spinae muscle loading during repetitive lifting. Eur. J. Appl. Physiol. Occup. Physiol. 74(1–2), 119–132 (1996)CrossRefGoogle Scholar
  101. 101.
    P.E. Purdue, P. Koulouvaris, H.G. Potter, B.J. Nestor, T.P. Sculco, The cellular and molecular biology of periprosthetic osteolysis. Clin. Orthop. Relat. Res. 454, 251–61 (2007)CrossRefGoogle Scholar
  102. 102.
    T.A. Quinn, S. Granite, M.A. Allessie, C. Antzelevitch, C. Bollensdorff, G. Bub, R.A.B. Burton, E. Cerbai, P.S. Chen, M. Delmar, D. DiFrancesco, Y.E. Earm et al., Minimum information about a cardiac electrophysiology experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing. Prog. Biophys. Mol. Biol. 107(1), 4–10 (2011)CrossRefGoogle Scholar
  103. 103.
    K.T. Rajamani, M.A. Styner, H. Talib, G. Zheng, L.P. Nolte, M.A. Gonzalez Ballester, Statistical deformable bone models for robust 3D surface extrapolation from sparse data. Med. Image Anal. 11, 99–109 (2007)CrossRefGoogle Scholar
  104. 104.
    A.J. Ramme, A.J. Criswell, B.R. Wolf, V.A. Magnotta, N.M. Grosland, EM segmentation of the distal femur and proximal tibia: a high-throughput approach to anatomic surface generation. Ann. Biomed. Eng. 39, 1555–1562 (2011)CrossRefGoogle Scholar
  105. 105.
    M.M. Rehani, G. Bongartz, W. Kalender, Managing X-ray dose in computed tomography. ICRP special task force report. Ann. ICRP 30, 7–45 (2000)Google Scholar
  106. 106.
    N. Rodriguez, M. Donizelli, N.L. Novre, SBMLeditor: effective creation of models in the Systems Biology Markup Language (SBML). BMC Bioinform. 8(79), 1–8 (2007)CrossRefGoogle Scholar
  107. 107.
    D. Rueckert, A.F. Frangi, J.A. Schnabel, Automatic construction of 3D statistical deformation models of the brain using nonrigid registration. IEEE Trans. Med. Imaging 22(8), 1014–1025 (2003)CrossRefGoogle Scholar
  108. 108.
    M. Sartori, M. Reggiani, D. Farina, D.G. Lloyd, Emg-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS ONE 7(12), 1–11 (2012)CrossRefGoogle Scholar
  109. 109.
    M. Sartori, L. Gizzia, D.G. Lloyd, D. Farina, A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives. Front. Comput. Neurosci. 7(79), 1–22 (2013)Google Scholar
  110. 110.
    M. Sartori, D. Farina, D.G. Lloyd, Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J. Biomech. 47(15), 3613–3621 (2014)CrossRefGoogle Scholar
  111. 111.
    O.D. Schipplein, T.P. Andriacchi, Interaction between active and passive knee stabilizers during level walking. J. Orthop. Res. 9(1), 113–119 (1991)CrossRefGoogle Scholar
  112. 112.
    R. Schmidt, L. Muller, A. Kress, H. Hirschfelder, A. Aplas, R.P. Pitto, A computed tomography assessment of femoral and acetabular bone changes after total hip arthroplasty. Int. Orthop. (SICOT) 26(5), 299–302 (2002)CrossRefGoogle Scholar
  113. 113.
    H. Seim, D. Kainmueller, M. Heller, H. Lamecker, S. Zachow, H.C. Hege, Automatic segmentation of the pelvic bones from ct data based on a statistical shape model, in EG VCBM’08 Proceedings of the First Eurographics conference on Visual Computing for Biomedicine (2008)Google Scholar
  114. 114.
    A. Seireg, R.J. Arvikar, A mathematical model for evaluation of forces in lower extremeties of the musculo-skeletal system. J. Biomech. 6(3), 313–326 (1973)CrossRefGoogle Scholar
  115. 115.
    M.A. Sevcik, N.M. Luger, D.B. Mach, M.A. Sabino, C.M. Peters, J.R. Ghilardi, M.J. Schwei, H. Rohrich, C. De Felipe, M.A. Kuskowski, P.W. Mantyh, Bone cancer pain: the effects of the bisphosphonate alendronate on pain, skeletal remodeling, tumor growth and tumor necrosis. Pain 111(1–2), 169–180 (2004)CrossRefGoogle Scholar
  116. 116.
    M.A. Sherman, A. Seth, S.L. Delp, Simbody: multibody dynamics for biomedical research. Iutam Symp. Hum. Body Dyn. 2, 241–261 (2011)Google Scholar
  117. 117.
    V.B. Shim, R.P. Pitto, R.M. Streicher, P.J. Hunter, I.A. Anderson, The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis. J. Biomech. 40(1), 26–35 (2007)CrossRefGoogle Scholar
  118. 118.
    V.B. Shim, R.P. Pitto, R.M. Streicher, P.J. Hunter, I.A. Anderson, Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set. J. Biomech. Eng. 130(5), 1–11 (2008)CrossRefGoogle Scholar
  119. 119.
    V.B. Shim, M. Battley, I.A. Anderson, J.T. Munro, Validation of an efficient method of assigning material properties in finite element analysis of pelvic bone. Comput. Methods Biomech. Biomed. Eng. 18(14), 1495–1499 (2015)CrossRefGoogle Scholar
  120. 120.
    P. Shull, A. Silder, R. Shultz, T. Besier, S. Delp, M. Cutkosky, Six-week gait retraining program for knee osteoarthritis patients: Learning retention and symptom changes, in American Society of Biomechanics (2012)Google Scholar
  121. 121.
    N.P. Smith, D.P. Nickerson, E.J. Crampin, P.J. Hunter, Multiscale computational modelling of the heart. Acta Numer. 13, 371–431 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    V.M. Spitzer, D. Whitlock, A.L. Scherzinger, M.J. Ackerman, The visible-human (male and female). Radiology 197, 533–533 (1995)CrossRefGoogle Scholar
  123. 123.
    R. Stamenkov, D. Howie, J. Taylor, D. Findlay, M. McGee, G. Kourlis, A. Carbone, M. Burwell, Measurement of bone defects adjacent to acetabular components of hip replacement. Clin. Orthop. Relat. Res. 7(412), 117–124 (2003)CrossRefGoogle Scholar
  124. 124.
    E. Stindel, J.L. Briard, P. Merloz, S. Plaweski, F. Dubrana, C. Lefevre, J. Troccaz, Bone morphing: 3D morphological data for total knee arthroplasty. Comput. Aided Surg. 7, 156–168 (2002)CrossRefGoogle Scholar
  125. 125.
    D.L. Sturnieks, T.F. Besier, D.G. Lloyd, Muscle activations to stabilize the knee following arthroscopic partial meniscectomy. Clin. Biomech. (Bristol) 26(3), 292–297 (2011)CrossRefGoogle Scholar
  126. 126.
    A. Suinesiaputra, A.F. Frangi, T.A. Kaandorp, H.J. Lamb, J.J. Bax, J.H. Reiber, B.P. Lelieveldt, Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images. IEEE Trans. Med. Imaging 28, 595–607 (2009)CrossRefGoogle Scholar
  127. 127.
    J.E. Taunton, M.B. Ryan, D.B. Clement, D.C. McKenzie, D.R. Lloyd-Smith, B.D. Zumbo, A retrospective case-control analysis of 2002 running injuries. Br. J. Sports Med. 36(2), 95–101 (2002)CrossRefGoogle Scholar
  128. 128.
    A.A. Tax, J.J. Denier van der Gon, C.C. Gielen, C.M. van den Tempel, Differences in the activation of m. biceps brachii in the control of slow isotonic movements and isometric contractions. Exp. Brain Res. 76(1), 55–63 (1989)CrossRefGoogle Scholar
  129. 129.
    A.A. Tax, J.J. Denier van der Gon, C.J. Erkelens, Differences in coordination of elbow flexor muscles in force tasks and in movement tasks. Exp. Brain Res. 81(3), 567–572 (1990)CrossRefGoogle Scholar
  130. 130.
    A.A. Tax, J.J. Denier van der Gon, C.C. Gielen, M. Kleyne, Differences in central control of m. biceps brachii in movement tasks and force tasks. Exp. Brain Res. 79(1), 138–142 (1990)CrossRefGoogle Scholar
  131. 131.
    M. Theeuwen, C.C. Gielen, L.E. Miller, The relative activation of muscles during isometric contractions and low-velocity movements against a load. Exp. Brain Res. 101(3), 493–505 (1994)CrossRefGoogle Scholar
  132. 132.
    G.M. Treece, A.H. Gee, P.M. Mayhew, K.E.S. Poole, High resolution cortical bone thickness measurement from clinical CT data. Med. Image Anal. 14(3), 276–290 (2010)CrossRefGoogle Scholar
  133. 133.
    M. Viceconti, C. Zannoni, D. Testi, A. Cappello, A new method for the automatic mesh generation of bone segments from ct data. J. Med. Eng. Technol. 23(2), 77–81 (1999)CrossRefGoogle Scholar
  134. 134.
    M. Viceconti, M. Davinelli, F. Taddei, A. Cappello, Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. J. Biomech. 37(10), 1597–1605 (2004)CrossRefGoogle Scholar
  135. 135.
    J.H. Waarsing, R.M. Rozendaal, J.N. Verhaar, S.M.A. Bierma-Zeinstra, H. Weinans, A statistical model of shape and density of the proximal femur in relation to radiological and clinical OA of the hip. Osteoarthr. Cartil. 18(6), 787–794 (2010)CrossRefGoogle Scholar
  136. 136.
    D. Waltemath, R. Adams, D.A. Beard, F.T. Bergmann, U.S. Bhalla, R. Britten, V. Chelliah, M.T. Cooling, J. Cooper, E.J. Crampin, A. Garny et al., Minimum information about a simulation experiment (MIASE). PLoS Comput. Biol. 7(4), 1–4 (2011)CrossRefGoogle Scholar
  137. 137.
    J.P. Walter, A.L. Kinney, S.A. Banks, D.D. DLima, T.F. Besier, D.G. Lloyd, B.J. Fregly, Muscle synergies improve optimization prediction of knee contact forces during walking. J. Biomech. Eng. 136(2), 1–9 (2014)CrossRefGoogle Scholar
  138. 138.
    T.D. White, P.A. Folkens (eds.), The Human Bone Manual, 1st edn. (Elsevier, Amsterdam, 2005)Google Scholar
  139. 139.
    C.R. Winby, D.G. Lloyd, T.B. Kirk, Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters. J. Biomech. 41(8), 1682–1688 (2008)CrossRefGoogle Scholar
  140. 140.
    C.R. Winby, D.G. Lloyd, T.F. Besier, T.B. Kirk, Muscle and external load contribution to knee joint contact loads during normal gait. J. Biomech. 42(14), 2294–2300 (2009)CrossRefGoogle Scholar
  141. 141.
    C.R. Winby, P. Gerus, T.B. Kirk, D.G. Lloyd, Correlation between emg-based co-activation measures and medial and lateral compartment loads of the knee during gait. Clin. Biomech. (Bristol) 28(9–10), 1014–1019 (2013)CrossRefGoogle Scholar
  142. 142.
    J.J. Woods, B. Bigland-Ritchie, Linear and non-linear surface emg/force relationships in human muscles. An anatomical/functional argument for the existence of both. Am. J. Phys. Med. 62(6), 287–299 (1983)Google Scholar
  143. 143.
    T.A. Wren, D.P. Lindsey, G.S. Beaupre, D.R. Carter, Effects of creep and cyclic loading on the mechanical properties and failure of human achilles tendons. Ann. Biomed. Eng. 31(6), 710–717 (2003)CrossRefGoogle Scholar
  144. 144.
    P. Wriggers, L. Krstulovic-Opara, J. Korelc, Smooth C-1-interpolations for two-dimensional frictional contact problems. Int. J. Num. Methods Eng. 51(12), 1469–1495 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  145. 145.
    T. Yu, C.M. Lloyd, D.P. Nickerson, M.T. Cooling, A.K. Miller, A. Garny, J.R. Terkildsen, J. Lawson, R.D. Britten, P.J. Hunter, P.M.F. Nielsen, The physiome model repository 2. Bioinformatics 27(5), 743–744 (2011)CrossRefGoogle Scholar
  146. 146.
    F.E. Zajac, Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)Google Scholar
  147. 147.
    R. Zdero, H. Bougherara, A. Dubov, S. Shah, P. Zalzal, A. Mahfud, E.H. Schemitsch, The effect of cortex thickness on intact femur biomechanics: a comparison of finite element analysis with synthetic femurs. Proc. Inst. Mech. Eng. [H] 224, 831–840 (2010)CrossRefGoogle Scholar
  148. 148.
    J. Zhang, D. Malcolm, J. Hislop-Jambrich, C.D.L. Thomas, P. Nielsen, Automatic meshing of femur cortical surfaces from clinical CT images. Mesh Process. Med. Image Anal. 2012, 40–48 (2012)Google Scholar
  149. 149.
    J. Zhang, D. Malcolm, J. Hislop-Jambrich, C.D.L. Thomas, P.M.F. Nielsen, An anatomical region-based statistical shape model of the human femur. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2, 176–185 (2014)Google Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2018

Authors and Affiliations

  • Justin Fernandez
    • 1
    • 2
  • Ju Zhang
    • 1
  • Vickie Shim
    • 1
  • Jacob T. Munro
    • 3
    • 4
  • Massimo Sartori
    • 5
  • Thor Besier
    • 1
    • 2
  • David G. Lloyd
    • 6
  • David P. Nickerson
    • 1
  • Peter Hunter
    • 1
  1. 1.Auckland Bioengineering Institute, University of AucklandAucklandNew Zealand
  2. 2.Department of Engineering ScienceUniversity of AucklandAucklandNew Zealand
  3. 3.School of MedicineUniversity of AucklandAucklandNew Zealand
  4. 4.Auckland City HospitalUniversity of AucklandAucklandNew Zealand
  5. 5.Department of Neurorehabilitation EngineeringGöttingen UniversityGottingenGermany
  6. 6.Menzies Health Institute Queensland, Griffith UniversityGold CoastAustralia

Personalised recommendations