From Age-Related Cognitive Decline to Alzheimer’s Disease: A Translational Overview of the Potential Role for Phosphodiesterases

  • Pim R. A. Heckman
  • Arjan Blokland
  • Jos PrickaertsEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 17)


Phosphodiesterase inhibitors (PDE-Is) are pharmacological compounds enhancing cAMP and/or cGMP signaling. Both these substrates affect neural communication by influencing presynaptic neurotransmitter release and postsynaptic intracellular pathways after neurotransmitter binding to its receptor. Both cAMP and cGMP play an important role in a variety of cellular functions including neuroplasticity and neuroprotection. This chapter provides a translational overview of the effects of different classes of PDE-Is on cognition enhancement in age-related cognitive decline and Alzheimer’s disease (AD). The most effective PDE-Is in preclinical models of aging and AD appear to be PDE2-Is, PDE4-Is and PDE5-Is. Clinical studies are relatively sparse and so far PDE1-Is and PDE4-Is showed some promising results. In the future, the demonstration of clinical proof of concept and the generation of isoform selective PDE-Is are the hurdles to overcome in developing safe and efficacious novel PDE-Is for the treatment of age-related cognitive decline and cognitive dysfunction in AD.


cAMP cGMP long-term potentiation PDE dementia Alzheimer's disease 


Conflict of Interest

Arjan Blokland and Jos Prickaerts have a proprietary interest in the PDE4 inhibitor roflumilast. In addition, Jos Prickaerts has a proprietary interest in selective PDE4D inhibitors, including GEBR-related compounds.


  1. Akhondzadeh S, Ghayyoumi R, Rezaei F, Salehi B, Modabbernia AH, Maroufi A, Esfandiari GR, Naderi M, Ghebleh F, Tabrizi M, Rezazadeh SA. Sildenafil adjunctive therapy to risperidone in the treatment of the negative symptoms of schizophrenia: a double-blind randomized placebo-controlled trial. Psychopharmacology. 2011;213(4):809–15. doi: 10.1007/s00213-010-2044-z.PubMedCrossRefGoogle Scholar
  2. Akkerman S, Blokland A, Prickaerts J. Possible overlapping time frames of acquisition and consolidation phases in object memory processes: a pharmacological approach. Learn Mem. 2016;23(1):29–37. doi: 10.1101/lm.040162.115.
  3. Arai H, Takahashi T. A combination therapy of donepezil and cilostazol for patients with moderate Alzheimer disease: pilot follow-up study. Am J Geriatr Psychiatr. 2009;17(4):353–4. doi: 10.1097/JGP.0b013e31819431ea.CrossRefGoogle Scholar
  4. Arancio O, Kandel ER, Hawkins RD. Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons. Nature. 1995;376(6535):74–80. doi: 10.1038/376074a0.PubMedCrossRefGoogle Scholar
  5. Arancio O, Kiebler M, Lee CJ, Lev-Ram V, Tsien RY, Kandel ER, Hawkins RD. Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell. 1996;87(6):1025–35.PubMedCrossRefGoogle Scholar
  6. Arnsten AF, Ramos BP, Birnbaum SG, Taylor JR. Protein kinase A as a therapeutic target for memory disorders: rationale and challenges. Trends Mol Med. 2005;11(3):121–8. doi: 10.1016/j.molmed.2005.01.006.PubMedCrossRefGoogle Scholar
  7. Austin SA, Santhanam AV, Katusic ZS. Endothelial nitric oxide modulates expression and processing of amyloid precursor protein. Circ Res. 2010;107(12):1498–502. doi: 10.1161/circresaha.110.233080.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bach ME, Barad M, Son H, Zhuo M, Lu YF, Shih R, Mansuy I, Hawkins RD, Kandel ER. Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc Natl Acad Sci U S A. 1999;96(9):5280–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Balestreri R, Fontana L, Astengo F. A double-blind placebo controlled evaluation of the safety and efficacy of vinpocetine in the treatment of patients with chronic vascular senile cerebral dysfunction. J Am Geriatr Soc. 1987;35(5):425–30.PubMedCrossRefGoogle Scholar
  10. Banerjee A, Patil S, Pawar MY, Gullapalli S, Gupta PK, Gandhi MN, Bhateja DK, Bajpai M, Sangana RR, Gudi GS, Khairatkar-Joshi N, Gharat LA. Imidazopyridazinones as novel PDE7 inhibitors: SAR and in vivo studies in Parkinson’s disease model. Bioorg Med Chem Lett. 2012;22(19):6286–91. doi: 10.1016/j.bmcl.2012.07.077.PubMedCrossRefGoogle Scholar
  11. Barnes CA. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979;93(1):74–104.PubMedCrossRefGoogle Scholar
  12. Beavo JA. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995;75(4):725–48.PubMedGoogle Scholar
  13. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58(3):488–520. doi: 10.1124/pr.58.3.5.PubMedCrossRefGoogle Scholar
  14. Birk S, Kruuse C, Petersen KA, Jonassen O, Tfelt-Hansen P, Olesen J. The phosphodiesterase 3 inhibitor cilostazol dilates large cerebral arteries in humans without affecting regional cerebral blood flow. J Cereb Blood Flow Metab. 2004;24(12):1352–8. doi: 10.1097/01.wcb.0000143536.22131.d7.PubMedCrossRefGoogle Scholar
  15. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31–9. doi: 10.1038/361031a0.PubMedCrossRefGoogle Scholar
  16. Blokland A, Schreiber R, Prickaerts J. Improving memory: a role for phosphodiesterases. Curr Pharm Des. 2006;12(20):2511–23.PubMedCrossRefGoogle Scholar
  17. Boess FG, Hendrix M, van der Staay FJ, Erb C, Schreiber R, van Staveren W, de Vente J, Prickaerts J, Blokland A, Koenig G. Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology. 2004;47(7):1081–92. doi: 10.1016/j.neuropharm.2004.07.040.PubMedCrossRefGoogle Scholar
  18. Bollen E, Prickaerts J. Phosphodiesterases in neurodegenerative disorders. IUBMB Life. 2012;64(12):965–70. doi: 10.1002/iub.1104.PubMedCrossRefGoogle Scholar
  19. Bollen E, Puzzo D, Rutten K, Privitera L, De Vry J, Vanmierlo T, Kenis G, Palmeri A, D'Hooge R, Balschun D, Steinbusch HM, Blokland A, Prickaerts J. Improved long-term memory via enhancing cGMP-PKG signaling requires cAMP-PKA signaling. Neuropsychopharmacology. 2014;39(11):2497–505. doi: 10.1038/npp.2014.106.PubMedPubMedCentralGoogle Scholar
  20. Bollen E, Akkerman S, Puzzo D, Gulisano W, Palmeri A, D'Hooge R, Balschun D, Steinbusch HW, Blokland A, Prickaerts J. Object memory enhancement by combining sub-efficacious doses of specific phosphodiesterase inhibitors. Neuropharmacology. 2015;95:361–6. doi: 10.1016/j.neuropharm.2015.04.008.PubMedCrossRefGoogle Scholar
  21. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science (New York, NY). 1999;286(5443):1358–62.CrossRefGoogle Scholar
  22. Bruel-Jungerman E, Davis S, Rampon C, Laroche S. Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J Neurosci. 2006;26(22):5888–93. doi: 10.1523/jneurosci.0782-06.2006.PubMedCrossRefGoogle Scholar
  23. Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 2001;11(3):297–305.PubMedCrossRefGoogle Scholar
  24. Bruno O, Fedele E, Prickaerts J, Parker LA, Canepa E, Brullo C, Cavallero A, Gardella E, Balbi A, Domenicotti C, Bollen E, Gijselaers HJ, Vanmierlo T, Erb K, Limebeer CL, Argellati F, Marinari UM, Pronzato MA, Ricciarelli R. GEBR-7b, a novel PDE4D selective inhibitor that improves memory in rodents at non-emetic doses. Br J Pharmacol. 2011;164(8):2054–63. doi: 10.1111/j.1476-5381.2011.01524.x.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Burgin AB, Magnusson OT, Singh J, Witte P, Staker BL, Bjornsson JM, Thorsteinsdottir M, Hrafnsdottir S, Hagen T, Kiselyov AS, Stewart LJ, Gurney ME. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol. 2010;28(1):63–70. doi: 10.1038/nbt.1598.PubMedCrossRefGoogle Scholar
  26. Ceyhan O, Birsoy K, Hoffman CS. Identification of biologically active PDE11-selective inhibitors using a yeast-based high-throughput screen. Chem Biol. 2012;19(1):155–63. doi: 10.1016/j.chembiol.2011.12.010.PubMedCrossRefGoogle Scholar
  27. Chen RW, Williams AJ, Liao Z, Yao C, Tortella FC, Dave JR. Broad spectrum neuroprotection profile of phosphodiesterase inhibitors as related to modulation of cell-cycle elements and caspase-3 activation. Neurosci Lett. 2007;418(2):165–9. doi: 10.1016/j.neulet.2007.03.033.PubMedCrossRefGoogle Scholar
  28. Cheng YF, Wang C, Lin HB, Li YF, Huang Y, JP X, Zhang HT. Inhibition of phosphodiesterase-4 reverses memory deficits produced by Abeta25-35 or Abeta1-40 peptide in rats. Psychopharmacology. 2010;212(2):181–91. doi: 10.1007/s00213-010-1943-3.PubMedCrossRefGoogle Scholar
  29. Comery TA, Martone RL, Aschmies S, Atchison KP, Diamantidis G, Gong X, Zhou H, Kreft AF, Pangalos MN, Sonnenberg-Reines J, Jacobsen JS, Marquis KL. Acute gamma-secretase inhibition improves contextual fear conditioning in the Tg2576 mouse model of Alzheimer's disease. J Neurosci. 2005;25(39):8898–902. doi: 10.1523/jneurosci.2693-05.2005.PubMedCrossRefGoogle Scholar
  30. Costa DA, Cracchiolo JR, Bachstetter AD, Hughes TF, Bales KR, Paul SM, Mervis RF, Arendash GW, Potter H. Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiol Aging. 2007;28(6):831–44. doi: 10.1016/j.neurobiolaging.2006.04.009.PubMedCrossRefGoogle Scholar
  31. Cuadrado-Tejedor M, Hervias I, Ricobaraza A, Puerta E, Perez-Roldan JM, Garcia-Barroso C, Franco R, Aguirre N, Garcia-Osta A. Sildenafil restores cognitive function without affecting beta-amyloid burden in a mouse model of Alzheimer's disease. Br J Pharmacol. 2011;164(8):2029–41. doi: 10.1111/j.1476-5381.2011.01517.x.PubMedPubMedCentralCrossRefGoogle Scholar
  32. DeNinno MP, Wright SW, Visser MS, Etienne JB, Moore DE, Olson TV, Rocke BN, Andrews MP, Zarbo C, Millham ML, Boscoe BP, Boyer DD, Doran SD, Houseknecht KL. 1,5-Substituted nipecotic amides: selective PDE8 inhibitors displaying diastereomer-dependent microsomal stability. Bioorg Med Chem Lett. 2011;21(10):3095–8. doi: 10.1016/j.bmcl.2011.03.022.PubMedCrossRefGoogle Scholar
  33. DeNoble VJ. Vinpocetine enhances retrieval of a step-through passive avoidance response in rats. Pharmacol Biochem Behav. 1987;26(1):183–6.PubMedCrossRefGoogle Scholar
  34. Deshmukh R, Sharma V, Mehan S, Sharma N, Bedi KL. Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine -- a PDE1 inhibitor. Eur J Pharmacol. 2009;620(1-3):49–56. doi: 10.1016/j.ejphar.2009.08.027.PubMedCrossRefGoogle Scholar
  35. Domek-Lopacinska K, Strosznajder JB. The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res. 2008;1216:68–77. doi: 10.1016/j.brainres.2008.02.108.PubMedCrossRefGoogle Scholar
  36. Domek-Lopacinska KU, Strosznajder JB. Cyclic GMP and nitric oxide synthase in aging and Alzheimer's disease. Mol Neurobiol. 2010;41(2–3):129–37. doi: 10.1007/s12035-010-8104-x.PubMedCrossRefGoogle Scholar
  37. Dundore RL, Clas DM, Wheeler LT, Habeeb PG, Bode DC, Buchholz RA, Silver PJ, Pagani ED. Zaprinast increases cyclic GMP levels in plasma and in aortic tissue of rats. Eur J Pharmacol. 1993;249(3):293–7.PubMedCrossRefGoogle Scholar
  38. Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res. 1988;31(1):47–59.PubMedCrossRefGoogle Scholar
  39. Ennaceur A, Neave N, Aggleton JP. Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res. 1997;113(3):509–19.PubMedCrossRefGoogle Scholar
  40. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMedCrossRefGoogle Scholar
  41. Francis SH, Blount MA, Corbin JD. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev. 2011;91(2):651–90. doi: 10.1152/physrev.00030.2010.PubMedCrossRefGoogle Scholar
  42. Frey U, Huang YY, Kandel ER. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science (New York, NY). 1993;260(5114):1661–4.CrossRefGoogle Scholar
  43. Gallant M, Aspiotis R, Day S, Dias R, Dube D, Dube L, Friesen RW, Girard M, Guay D, Hamel P, Huang Z, Lacombe P, Laliberte S, Levesque JF, Liu S, Macdonald D, Mancini J, Nicholson DW, Styhler A, Townson K, Waters K, Young RN, Girard Y. Discovery of MK-0952, a selective PDE4 inhibitor for the treatment of long-term memory loss and mild cognitive impairment. Bioorg Med Chem Lett. 2010;20(22):6387–93. doi: 10.1016/j.bmcl.2010.09.087.PubMedCrossRefGoogle Scholar
  44. Garcia-Barroso C, Ricobaraza A, Pascual-Lucas M, Unceta N, Rico AJ, Goicolea MA, Salles J, Lanciego JL, Oyarzabal J, Franco R, Cuadrado-Tejedor M, Garcia-Osta A. Tadalafil crosses the blood-brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology. 2013;64:114–23. doi: 10.1016/j.neuropharm.2012.06.052.PubMedCrossRefGoogle Scholar
  45. Goff DC, Cather C, Freudenreich O, Henderson DC, Evins AE, Culhane MA, Walsh JP. A placebo-controlled study of sildenafil effects on cognition in schizophrenia. Psychopharmacology. 2009;202(1-3):411–7. doi: 10.1007/s00213-008-1278-5.PubMedCrossRefGoogle Scholar
  46. Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest. 2004;114(11):1624–34. doi: 10.1172/jci22831.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci. 1999;2(3):260–5. doi: 10.1038/6365.PubMedCrossRefGoogle Scholar
  48. Grass H, Klotz T, Fathian-Sabet B, Berghaus G, Engelmann U, Kaferstein H. Sildenafil (Viagra): is there an influence on psychological performance? Int Urol Nephrol. 2001;32(3):409–12.PubMedCrossRefGoogle Scholar
  49. Grauer SM, Pulito VL, Navarra RL, Kelly MP, Kelley C, Graf R, Langen B, Logue S, Brennan J, Jiang L, Charych E, Egerland U, Liu F, Marquis KL, Malamas M, Hage T, Comery TA, Brandon NJ. Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J Pharmacol Exp Ther. 2009;331(2):574–90. doi: 10.1124/jpet.109.155994.PubMedCrossRefGoogle Scholar
  50. Gurney ME, Burgin AB, Magnusson OT, Stewart LJ. Small molecule allosteric modulators of phosphodiesterase 4. Handb Exp Pharmacol. 2011;204:167–92. doi: 10.1007/978-3-642-17969-3_7.CrossRefGoogle Scholar
  51. Gurney ME, D'Amato EC, Burgin AB. Phosphodiesterase-4 (PDE4) molecular pharmacology and Alzheimer’s disease. Neurotherapeutics. 2015;12(1):49–56. doi: 10.1007/s13311-014-0309-7.PubMedCrossRefGoogle Scholar
  52. Heckman PR, Blokland A, Ramaekers J, Prickaerts J. PDE and cognitive processing: beyond the memory domain. Neurobiol Learn Mem. 2015a;119:108–22. doi: 10.1016/j.nlm.2014.10.011.PubMedCrossRefGoogle Scholar
  53. Heckman PR, Wouters C, Prickaerts J. Phosphodiesterase inhibitors as a target for cognition enhancement in aging and Alzheimer’s disease: a translational overview. Curr Pharm Des. 2015b;21(3):317–31.PubMedCrossRefGoogle Scholar
  54. Hindmarch I, Fuchs HH, Erzigkeit H. Efficacy and tolerance of vinpocetine in ambulant patients suffering from mild to moderate organic psychosyndromes. Int Clin Psychopharmacol. 1991;6(1):31–43.PubMedCrossRefGoogle Scholar
  55. Hiramatsu M, Inoue K. Des-tyrosine(1) dynorphin A-(2-13) improves carbon monoxide-induced impairment of learning and memory in mice. Brain Res. 2000;859(2):303–10.PubMedCrossRefGoogle Scholar
  56. Hiramatsu M, Takiguchi O, Nishiyama A, Mori H. Cilostazol prevents amyloid beta peptide(25-35)-induced memory impairment and oxidative stress in mice. Br J Pharmacol. 2010;161(8):1899–912. doi: 10.1111/j.1476-5381.2010.01014.x.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hutson PH, Finger EN, Magliaro BC, Smith SM, Converso A, Sanderson PE, Mullins D, Hyde LA, Eschle BK, Turnbull Z, Sloan H, Guzzi M, Zhang X, Wang A, Rindgen D, Mazzola R, Vivian JA, Eddins D, Uslaner JM, Bednar R, Gambone C, Le-Mair W, Marino MJ, Sachs N, Xu G, Parmentier-Batteur S. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-py ran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology. 2011;61(4):665–76. doi: 10.1016/j.neuropharm.2011.05.009.PubMedCrossRefGoogle Scholar
  58. Imanishi T, Sawa A, Ichimaru Y, Miyashiro M, Kato S, Yamamoto T, Ueki S. Ameliorating effects of rolipram on experimentally induced impairments of learning and memory in rodents. Eur J Pharmacol. 1997;321(3):273–8.PubMedCrossRefGoogle Scholar
  59. Impey S, Mark M, Villacres EC, Poser S, Chavkin C, Storm DR. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron. 1996;16(5):973–82.PubMedCrossRefGoogle Scholar
  60. Itoh J, Ukai M, Kameyama T. Dynorphin A-(1-13) markedly improves scopolamine-induced impairment of spontaneous alternation performance in mice. Eur J Pharmacol. 1993;236(3):341–5.PubMedCrossRefGoogle Scholar
  61. Izquierdo JL, Aparicio J. Roflumilast for COPD. Drugs Today (Barc). 2010;46(11):823–31. doi: 10.1358/dot.2010.46.11.1521831.CrossRefGoogle Scholar
  62. Jancic D, Lopez de Armentia M, Valor LM, Olivares R, Barco A. Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration. Cerebral Cortex. 2009;19(11):2535–47. doi: 10.1093/cercor/bhp004.PubMedCrossRefGoogle Scholar
  63. Jeon KI, Xu X, Aizawa T, Lim JH, Jono H, Kwon DS, Abe J, Berk BC, Li JD, Yan C. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci U S A. 2010;107(21):9795–800. doi: 10.1073/pnas.0914414107.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jin K, Mao XO, Zhu Y, Greenberg DA. MEK and ERK protect hypoxic cortical neurons via phosphorylation of Bad. J Neurochem. 2002;80(1):119–25.PubMedCrossRefGoogle Scholar
  65. Kai Y, Watanabe M, Morioka M, Hirano T, Yano S, Ohmori Y, Kawano T, Hamada J, Kuratsu J. Cilostazol improves symptomatic intracranial artery stenosis - Evaluation of cerebral blood flow with single photon emission computed tomography. Surg Neurol Int. 2011;2:8. doi: 10.4103/2152-7806.76145.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kehler J, Nielsen J. PDE10A inhibitors: novel therapeutic drugs for schizophrenia. Curr Pharm Des. 2011;17(2):137–50.PubMedCrossRefGoogle Scholar
  67. Kelly MP, Logue SF, Brennan J, Day JP, Lakkaraju S, Jiang L, Zhong X, Tam M, Sukoff Rizzo SJ, Platt BJ, Dwyer JM, Neal S, Pulito VL, Agostino MJ, Grauer SM, Navarra RL, Kelley C, Comery TA, Murrills RJ, Houslay MD, Brandon NJ. Phosphodiesterase 11A in brain is enriched in ventral hippocampus and deletion causes psychiatric disease-related phenotypes. Proc Natl Acad Sci U S A. 2010;107(18):8457–62. doi: 10.1073/pnas.1000730107.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kleiman RJ, Lanz TA, Finley JE, Bove SE, Majchrzak MJ, Becker SL, Carvajal-Gonzales S, Kuhn AM, Wood KM, Mariga A. Dendritic spine density deficits in the hippocampal CA1 region of young Tg2576 mice are ameliorated with the PDE9A inhibitor PF-04447943. Alzheimers Dement. 2010;6(4):S563–4.CrossRefGoogle Scholar
  69. Kleiman RJ, Chapin DS, Christoffersen C, Freeman J, Fonseca KR, Geoghegan KF, Grimwood S, Guanowsky V, Hajos M, Harms JF, Helal CJ, Hoffmann WE, Kocan GP, Majchrzak MJ, McGinnis D, McLean S, Menniti FS, Nelson F, Roof R, Schmidt AW, Seymour PA, Stephenson DT, Tingley FD, Vanase-Frawley M, Verhoest PR, Schmidt CJ. Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo. J Pharmacol Exp Ther. 2012;341(2):396–409. doi: 10.1124/jpet.111.191353.PubMedCrossRefGoogle Scholar
  70. Krause W, Kuhne G. Pharmacokinetics of rolipram in the rhesus and cynomolgus monkeys, the rat and the rabbit. Studies on species differences. Xenobiotica. 1988;18(5):561–71. doi: 10.3109/00498258809041693.PubMedCrossRefGoogle Scholar
  71. Kruuse C, Gupta S, Nilsson E, Kruse L, Edvinsson L. Differential vasoactive effects of sildenafil and tadalafil on cerebral arteries. Eur J Pharmacol. 2012;674(2-3):345–51. doi: 10.1016/j.ejphar.2011.10.037.PubMedCrossRefGoogle Scholar
  72. Kwak YD, Wang R, Li JJ, Zhang YW, Xu H, Liao FF. Differential regulation of BACE1 expression by oxidative and nitrosative signals. Mol Neurodegener. 2011;6:17. doi: 10.1186/1750-1326-6-17.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010;59(6):367–74. doi: 10.1016/j.neuropharm.2010.05.004.PubMedCrossRefGoogle Scholar
  74. Lendvai B, Zelles T, Rozsa B, Vizi ES. A vinca alkaloid enhances morphological dynamics of dendritic spines of neocortical layer 2/3 pyramidal cells. Brain Res Bull. 2003;59(4):257–60.PubMedCrossRefGoogle Scholar
  75. de Lima MN, Presti-Torres J, Garcia VA, Guimaraes MR, Scalco FS, Roesler R, Schroder N. Amelioration of recognition memory impairment associated with iron loading or aging by the type 4-specific phosphodiesterase inhibitor rolipram in rats. Neuropharmacology. 2008;55(5):788–92. doi: 10.1016/j.neuropharm.2008.06.025.PubMedCrossRefGoogle Scholar
  76. Lu YF, Hawkins RD. Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus. J Neurophysiol. 2002;88(3):1270–8.PubMedGoogle Scholar
  77. Lu YF, Kandel ER, Hawkins RD. Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J Neurosc. 1999;19(23):10250–61.Google Scholar
  78. Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci. 2005;6(8):603–14. doi: 10.1038/nrn1726.PubMedCrossRefGoogle Scholar
  79. Lu Y, Christian K, Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem. 2008;89(3):312–23. doi: 10.1016/j.nlm.2007.08.018.PubMedCrossRefGoogle Scholar
  80. McGirr A, Lipina TV, Mun HS, Georgiou J, Al-Amri AH, Ng E, Zhai D, Elliott C, Cameron RT, Mullins JG, Liu F, Baillie GS, Clapcote SJ, Roder JC. Specific inhibition of phosphodiesterase-4B results in anxiolysis and facilitates memory acquisition. Neuropsychopharmacology. 2015; doi: 10.1038/npp.2015.240.
  81. McLachlan CS, Chen ML, Lynex CN, Goh DL, Brenner S, Tay SK. Changes in PDE4D isoforms in the hippocampus of a patient with advanced Alzheimer disease. Arch Neurol. 2007;64(3):456–7. doi: 10.1001/archneur.64.3.456.PubMedCrossRefGoogle Scholar
  82. Medina AE. Therapeutic utility of phosphodiesterase type I inhibitors in neurological conditions. Front Neurosci. 2011;5:21. doi: 10.3389/fnins.2011.00021.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Menniti FS, Chappie TA, Humphrey JM, Schmidt CJ. Phosphodiesterase 10A inhibitors: a novel approach to the treatment of the symptoms of schizophrenia. Curr Opin Investig Drugs. 2007;8(1):54–9.PubMedGoogle Scholar
  84. Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci. 2009;10(12):850–60. doi: 10.1038/nrn2738.PubMedCrossRefGoogle Scholar
  85. Miyamoto K, Kurita M, Ohmae S, Sakai R, Sanae F, Takagi K. Selective tracheal relaxation and phosphodiesterase-IV inhibition by xanthine derivatives. Eur J Pharmacol. 1994;267(3):317–22.PubMedCrossRefGoogle Scholar
  86. Mochizuki Y, Oishi M, Mizutani T. Effects of cilostazol on cerebral blood flow, P300, and serum lipid levels in the chronic stage of cerebral infarction. J Stroke Cerebrovasc Dis. 2001;10(2):63–9. doi: 10.1053/jscd.2001.24657.PubMedCrossRefGoogle Scholar
  87. Molnar P, Gaal L. Effect of different subtypes of cognition enhancers on long-term potentiation in the rat dentate gyrus in vivo. Eur J Pharmacol. 1992;215(1):17–22.PubMedCrossRefGoogle Scholar
  88. Molnar P, Gaal L, Horvath C. The impairment of long-term potentiation in rats with medial septal lesion and its restoration by cognition enhancers. Neurobiology (Bp). 1994;2(3):255–66.Google Scholar
  89. Morales-Garcia JA, Redondo M, Alonso-Gil S, Gil C, Perez C, Martinez A, Santos A, Perez-Castillo A. Phosphodiesterase 7 inhibition preserves dopaminergic neurons in cellular and rodent models of Parkinson disease. PLoS One. 2011;6(2):e17240. doi: 10.1371/journal.pone.0017240.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Morales-Garcia JA, Aguilar-Morante D, Hernandez-Encinas E, Alonso-Gil S, Gil C, Martinez A, Santos A, Perez-Castillo A. Silencing phosphodiesterase 7B gene by lentiviral-shRNA interference attenuates neurodegeneration and motor deficits in hemiparkinsonian mice. Neurobiol Aging. 2015;36(2):1160–73. doi: 10.1016/j.neurobiolaging.2014.10.008.PubMedCrossRefGoogle Scholar
  91. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.PubMedCrossRefGoogle Scholar
  92. Moschetti V, Boland K, Feifel U, Hoch A, Zimdahl-Gelling H, Sand M. First-in-human study assessing safety, tolerability and pharmacokinetics of BI 409306, a selective phosphodiesterase 9A inhibitor, in healthy males. Br J Clin Pharmacol. 2016; doi: 10.1111/bcp.13060.
  93. Mumby DG. Perspectives on object-recognition memory following hippocampal damage: lessons from studies in rats. Behav Brain Res. 2001;127(1-2):159–81.PubMedCrossRefGoogle Scholar
  94. Murad F, Mittal CK, Arnold WP, Katsuki S, Kimura H. Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res. 1978;9:145–58.PubMedGoogle Scholar
  95. Nakamizo T, Kawamata J, Yoshida K, Kawai Y, Kanki R, Sawada H, Kihara T, Yamashita H, Shibasaki H, Akaike A, Shimohama S. Phosphodiesterase inhibitors are neuroprotective to cultured spinal motor neurons. J Neurosci Res. 2003;71(4):485–95. doi: 10.1002/jnr.10483.PubMedCrossRefGoogle Scholar
  96. Olton DS, Samuelson RJ. Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Behav Process. 1976;2(2):97.CrossRefGoogle Scholar
  97. Orejana L, Barros-Minones L, Jordan J, Puerta E, Aguirre N. Sildenafil ameliorates cognitive deficits and tau pathology in a senescence-accelerated mouse model. Neurobiol Aging. 2012;33(3):625.e611–20. doi: 10.1016/j.neurobiolaging.2011.03.018.CrossRefGoogle Scholar
  98. Palmeri A, Privitera L, Giunta S, Loreto C, Puzzo D. Inhibition of phosphodiesterase-5 rescues age-related impairment of synaptic plasticity and memory. Behav Brain Res. 2013;240:11–20. doi: 10.1016/j.bbr.2012.10.060.PubMedCrossRefGoogle Scholar
  99. Park SH, Kim JH, Bae SS, Hong KW, Lee DS, Leem JY, Choi BT, Shin HK. Protective effect of the phosphodiesterase III inhibitor cilostazol on amyloid beta-induced cognitive deficits associated with decreased amyloid beta accumulation. Biochem Biophys Res Commun. 2011;408(4):602–8. doi: 10.1016/j.bbrc.2011.04.068.PubMedCrossRefGoogle Scholar
  100. Paterno R, Faraci FM, Heistad DD. Role of Ca(2+)-dependent K+ channels in cerebral vasodilatation induced by increases in cyclic GMP and cyclic AMP in the rat. Stroke. 1996;27(9):1603–7. discussion 1607-1608PubMedCrossRefGoogle Scholar
  101. Patil CS, Jain NK, Singh VP, Kulkarni SK. Differential effect of the PDE5 inhibitors, sildenafil and zaprinast, in aging- and lipopolysaccharide-induced cognitive dysfunction in mice. Drug Dev Res. 2004;63(2):66–75. doi: 10.1002/ddr.10398.CrossRefGoogle Scholar
  102. Perez-Gonzalez R, Pascual C, Antequera D, Bolos M, Redondo M, Perez DI, Perez-Grijalba V, Krzyzanowska A, Sarasa M, Gil C, Ferrer I, Martinez A, Carro E. Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer's disease. Neurobiol Aging. 2013;34(9):2133–45. doi: 10.1016/j.neurobiolaging.2013.03.011.PubMedCrossRefGoogle Scholar
  103. Pérez-Torres S, Miró X, Palacios JM, Cortés R, Puigdoménech P, Mengod G. Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and [3H]rolipram binding autoradiography: comparison with monkey and rat brain. J Chem Neuroanat. 2000;20(3–4):349–74. doi: 10.1016/S0891-0618(00)00097-1.PubMedCrossRefGoogle Scholar
  104. Perez-Torres S, Cortes R, Tolnay M, Probst A, Palacios JM, Mengod G. Alterations on phosphodiesterase type 7 and 8 isozyme mRNA expression in Alzheimer’s disease brains examined by in situ hybridization. Exp Neurol. 2003;182(2):322–34.PubMedCrossRefGoogle Scholar
  105. Peters M, Bletsch M, Stanley J, Wheeler D, Scott R, Tully T. The PDE4 inhibitor HT-0712 improves hippocampus-dependent memory in aged mice. Neuropsychopharmacology. 2014;39(13):2938–48. doi: 10.1038/npp.2014.154.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Prickaerts J, Sik A, van Staveren WC, Koopmans G, Steinbusch HW, van der Staay FJ, de Vente J, Blokland A. Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem Int. 2004;45(6):915–28. doi: 10.1016/j.neuint.2004.03.022.PubMedCrossRefGoogle Scholar
  107. Prickaerts J. Phosphodiesterase inhibitors. In: Stolerman I, editor. Encyclopedia of psychopharmacology. Berlin Heidelberg: Springer; 2010. p. 1022–8. doi: 10.1007/978-3-540-68706-1_403.
  108. Puhan M. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2011;(8):ED000028. doi: 10.1002/14651858.ed000028.
  109. Puzzo D, Staniszewski A, Deng SX, Privitera L, Leznik E, Liu S, Zhang H, Feng Y, Palmeri A, Landry DW, Arancio O. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-beta load in an Alzheimer’s disease mouse model. J Neurosc. 2009;29(25):8075–86. doi: 10.1523/jneurosci.0864-09.2009.CrossRefGoogle Scholar
  110. Rabe KF. Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br J Pharmacol. 2011;163(1):53–67. doi: 10.1111/j.1476-5381.2011.01218.x.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ramos BP, Birnbaum SG, Lindenmayer I, Newton SS, Duman RS, Arnsten AF. Dysregulation of protein kinase a signaling in the aged prefrontal cortex: new strategy for treating age-related cognitive decline. Neuron. 2003;40(4):835–45.PubMedCrossRefGoogle Scholar
  112. Reneerkens OA, Rutten K, Steinbusch HW, Blokland A, Prickaerts J. Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology. 2009;202(1-3):419–43. doi: 10.1007/s00213-008-1273-x.PubMedCrossRefGoogle Scholar
  113. Reneerkens OA, Rutten K, Akkerman S, Blokland A, Shaffer CL, Menniti FS, Steinbusch HW, Prickaerts J. Phosphodiesterase type 5 (PDE5) inhibition improves object recognition memory: indications for central and peripheral mechanisms. Neurobiol Learn Mem. 2012;97(4):370–9. doi: 10.1016/j.nlm.2012.02.008.PubMedCrossRefGoogle Scholar
  114. Reneerkens O, Sambeth A, Ramaekers J, Steinbusch H, Blokland A, Prickaerts J. The effects of the phosphodiesterase type 5 inhibitor vardenafil on cognitive performance in healthy adults: a behavioral- electroencephalography study. J Psychopharmacol. 2013a;27(7):600–8. doi: 10.1177/0269881113477747.PubMedCrossRefGoogle Scholar
  115. Reneerkens OA, Rutten K, Bollen E, Hage T, Blokland A, Steinbusch HW, Prickaerts J. Inhibition of phoshodiesterase type 2 or type 10 reverses object memory deficits induced by scopolamine or MK-801. Behav Brain Res. 2013b;236(1):16–22. doi: 10.1016/j.bbr.2012.08.019.PubMedCrossRefGoogle Scholar
  116. Reneerkens OA, Sambeth A, Blokland A, Prickaerts J. PDE2 and PDE10, but not PDE5, inhibition affect basic auditory information processing in rats. Behav Brain Res. 2013c;250:251–6. doi: 10.1016/j.bbr.2013.05.014.PubMedCrossRefGoogle Scholar
  117. Reneerkens OA, Sambeth A, Van Duinen MA, Blokland A, Steinbusch HW, Prickaerts J. The PDE5 inhibitor vardenafil does not affect auditory sensory gating in rats and humans. Psychopharmacology. 2013d;225(2):303–12. doi: 10.1007/s00213-012-2817-7.PubMedCrossRefGoogle Scholar
  118. Reyes-Irisarri E, Markerink-Van Ittersum M, Mengod G, de Vente J. Expression of the cGMP-specific phosphodiesterases 2 and 9 in normal and Alzheimer’s disease human brains. Eur J Neurosci. 2007;25(11):3332–8. doi: 10.1111/j.1460-9568.2007.05589.x.PubMedCrossRefGoogle Scholar
  119. Reymann KG, Frey JU. The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology. 2007;52(1):24–40. doi: 10.1016/j.neuropharm.2006.07.026.PubMedCrossRefGoogle Scholar
  120. Richter Y, Herzog Y, Eyal I, Cohen T. Cognitex supplementation in elderly adults with memory complaints: an uncontrolled open label trial. J Diet Suppl. 2011;8(2):158–68. doi: 10.3109/19390211.2011.569514.PubMedCrossRefGoogle Scholar
  121. Richter W, Menniti FS, Zhang HT, Conti M. PDE4 as a target for cognition enhancement. Expert Opin Ther Targets. 2013;17(9):1011–27. doi: 10.1517/14728222.2013.818656.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Robichaud A, Savoie C, Stamatiou PB, Lachance N, Jolicoeur P, Rasori R, Chan CC. Assessing the emetic potential of PDE4 inhibitors in rats. Br J Pharmacol. 2002;135(1):113–8. doi: 10.1038/sj.bjp.0704457.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Rodefer JS, Saland SK, Eckrich SJ. Selective phosphodiesterase inhibitors improve performance on the ED/ID cognitive task in rats. Neuropharmacology. 2012;62(3):1182–90. doi: 10.1016/j.neuropharm.2011.08.008.PubMedCrossRefGoogle Scholar
  124. Rodriguez-Moreno A, Sihra TS. Presynaptic kainate receptor-mediated facilitation of glutamate release involves Ca2+−calmodulin and PKA in cerebrocortical synaptosomes. FEBS Lett. 2013;587(6):788–92. doi: 10.1016/j.febslet.2013.01.071.PubMedCrossRefGoogle Scholar
  125. Rutten K, Prickaerts J, Hendrix M, van der Staay FJ, Sik A, Blokland A. Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol. 2007;558(1-3):107–12. doi: 10.1016/j.ejphar.2006.11.041.PubMedCrossRefGoogle Scholar
  126. Rutten K, Van Donkelaar EL, Ferrington L, Blokland A, Bollen E, Steinbusch HW, Kelly PA, Prickaerts JH. Phosphodiesterase inhibitors enhance object memory independent of cerebral blood flow and glucose utilization in rats. Neuropsychopharmacology. 2009;34(8):1914–25. doi: 10.1038/npp.2009.24.PubMedCrossRefGoogle Scholar
  127. Sakurai H, Hanyu H, Sato T, Kume K, Hirao K, Kanetaka H, Iwamoto T. Effects of cilostazol on cognition and regional cerebral blood flow in patients with Alzheimer's disease and cerebrovascular disease: a pilot study. Geriatr Gerontol Int. 2013;13(1):90–7. doi: 10.1111/j.1447-0594.2012.00866.x.PubMedCrossRefGoogle Scholar
  128. Saletu B, Anderer P, Fischhof PK, Lorenz H, Barousch R, Bohmer F. EEG mapping and psychopharmacological studies with denbufylline in SDAT and MID. Biol Psychiatry. 1992;32(8):668–81.PubMedCrossRefGoogle Scholar
  129. Sanchez JJ, Abreu P, Gonzalez MC. Sodium nitroprusside stimulates L-DOPA release from striatal tissue through nitric oxide and cGMP. Eur J Pharmacol. 2002;438(1-2):79–83.PubMedCrossRefGoogle Scholar
  130. Sanchez AJ, Puerta C, Ballester S, Gonzalez P, Arriaga A, Garcia-Merino A. Rolipram impairs NF-kappaB activity and MMP-9 expression in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2005;168(1-2):13–20. doi: 10.1016/j.jneuroim.2005.03.024.PubMedCrossRefGoogle Scholar
  131. Sanders MJ, Wiltgen BJ, Fanselow MS. The place of the hippocampus in fear conditioning. Eur J Pharmacol. 2003;463(1-3):217–23.PubMedCrossRefGoogle Scholar
  132. Saura CA, Valero J. The role of CREB signaling in Alzheimer's disease and other cognitive disorders. Rev Neurosci. 2011;22(2):153–69. doi: 10.1515/rns.2011.018.PubMedCrossRefGoogle Scholar
  133. Schmidt CJ, Chapin DS, Cianfrogna J, Corman ML, Hajos M, Harms JF, Hoffman WE, Lebel LA, McCarthy SA, Nelson FR, Proulx-LaFrance C, Majchrzak MJ, Ramirez AD, Schmidt K, Seymour PA, Siuciak JA, Tingley FD 3rd, Williams RD, Verhoest PR, Menniti FS. Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther. 2008;325(2):681–90. doi: 10.1124/jpet.107.132910.PubMedCrossRefGoogle Scholar
  134. Schoffelmeer AN, Wardeh G, Mulder AH. Cyclic AMP facilitates the electrically evoked release of radiolabelled noradrenaline, dopamine and 5-hydroxytryptamine from rat brain slices. Naunyn Schmiedeberg's Arch Pharmacol. 1985;330(1):74–6.CrossRefGoogle Scholar
  135. Schultheiss D, Muller SV, Nager W, Stief CG, Schlote N, Jonas U, Asvestis C, Johannes S, Munte TF. Central effects of sildenafil (Viagra) on auditory selective attention and verbal recognition memory in humans: a study with event-related brain potentials. World J Urol. 2001;19(1):46–50.PubMedCrossRefGoogle Scholar
  136. Schwam EM, Nicholas T, Chew R, Billing CB, Davidson W, Ambrose D, Altstiel LD. A multicenter, double-blind, placebo-controlled trial of the PDE9A inhibitor, PF-04447943, in Alzheimer's disease. Curr Alzheimer Res. 2014;11(5):413–21.PubMedCrossRefGoogle Scholar
  137. Scott Bitner R. Cyclic AMP response element-binding protein (CREB) phosphorylation: a mechanistic marker in the development of memory enhancing Alzheimer's disease therapeutics. Biochem Pharmacol. 2012;83(6):705–14. doi: 10.1016/j.bcp.2011.11.009.PubMedCrossRefGoogle Scholar
  138. Shader RI, Harmatz JS, Salzman C. A new scale for clinical assessment in geriatric populations: Sandoz Clinical Assessment--Geriatric (SCAG). J Am Geriatr Soc. 1974;22(3):107–13.PubMedCrossRefGoogle Scholar
  139. Shah BH, Catt KJ. GPCR-mediated transactivation of RTKs in the CNS: mechanisms and consequences. Trends Neurosci. 2004;27(1):48–53. doi: 10.1016/j.tins.2003.11.003.PubMedCrossRefGoogle Scholar
  140. Shim YS, Pae CU, Kim SW, Kim HW, Kim JC, Koh JS. Effects of repeated dosing with Udenafil (Zydena) on cognition, somatization and erection in patients with erectile dysfunction: a pilot study. Int J Impot Res. 2011;23(3):109–14. doi: 10.1038/ijir.2011.13.PubMedCrossRefGoogle Scholar
  141. Shim YS, Pae CU, Cho KJ, Kim SW, Kim JC, Koh JS. Effects of daily low-dose treatment with phosphodiesterase type 5 inhibitor on cognition, depression, somatization and erectile function in patients with erectile dysfunction: a double-blind, placebo-controlled study. Int J Impot Res. 2014;26(2):76–80. doi: 10.1038/ijir.2013.38.PubMedCrossRefGoogle Scholar
  142. Shirayama Y, Konishi T, Hashimoto K. Effects of add-on cilostazol on cognition in patients with schizophrenia: an open-label pilot trial. J Clin Psychopharmacol. 2011;31(5):659–61. doi: 10.1097/JCP.0b013e31822c94fd.PubMedCrossRefGoogle Scholar
  143. Sierksma AS, Rutten K, Sydlik S, Rostamian S, Steinbusch HW, van den Hove DL, Prickaerts J. Chronic phosphodiesterase type 2 inhibition improves memory in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Neuropharmacology. 2013;64:124–36. doi: 10.1016/j.neuropharm.2012.06.048.PubMedCrossRefGoogle Scholar
  144. van der Staay FJ, Rutten K, Barfacker L, Devry J, Erb C, Heckroth H, Karthaus D, Tersteegen A, van Kampen M, Blokland A, Prickaerts J, Reymann KG, Schroder UH, Hendrix M. The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology. 2008;55(5):908–18. doi: 10.1016/j.neuropharm.2008.07.005.PubMedCrossRefGoogle Scholar
  145. Subhan Z, Hindmarch I. Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol. 1985;28(5):567–71.PubMedCrossRefGoogle Scholar
  146. Szatmari SZ, Whitehouse PJ. Vinpocetine for cognitive impairment and dementia. Cochrane Database Syst Rev. 2003;(1):CD003119. doi: 10.1002/14651858.cd003119.
  147. Taguchi I, Oka K, Kitamura K, Sugiura M, Oku A, Matsumoto M. Protection by a cyclic AMP-specific phosphodiesterase inhibitor, rolipram, and dibutyryl cyclic AMP against Propionibacterium acnes and lipopolysaccharide-induced mouse hepatitis. Inflamm Res. 1999;48(7):380–5.PubMedCrossRefGoogle Scholar
  148. Taqatqeh F, Mergia E, Neitz A, Eysel UT, Koesling D, Mittmann T. More than a retrograde messenger: nitric oxide needs two cGMP pathways to induce hippocampal long-term potentiation. J Neurosci. 2009;29(29):9344–50. doi: 10.1523/jneurosci.1902-09.2009.PubMedCrossRefGoogle Scholar
  149. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30(4):572–80. doi: 10.1002/ana.410300410.PubMedCrossRefGoogle Scholar
  150. Thal LJ, Salmon DP, Lasker B, Bower D, Klauber MR. The safety and lack of efficacy of vinpocetine in Alzheimer's disease. J Am Geriatr Soc. 1989;37(6):515–20.PubMedCrossRefGoogle Scholar
  151. Treves TA, Korczyn AD. Denbufylline in dementia: a double-blind controlled study. Dement Geriatr Cogn Disord. 1999;10(6):505–10.PubMedCrossRefGoogle Scholar
  152. Tsai LC, Beavo JA. Regulation of adrenal steroidogenesis by the high-affinity phosphodiesterase 8 family. Horm Metab Res. 2012;44(10):790–4. doi: 10.1055/s-0032-1321861.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tsai LC, Chan GC, Nangle SN, Shimizu-Albergine M, Jones GL, Storm DR, Beavo JA, Zweifel LS. Inactivation of Pde8b enhances memory, motor performance, and protects against age-induced motor coordination decay. Genes Brain Behav. 2012;11(7):837–47. doi: 10.1111/j.1601-183X.2012.00836.x.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Urushitani M, Inoue R, Nakamizo T, Sawada H, Shibasaki H, Shimohama S. Neuroprotective effect of cyclic GMP against radical-induced toxicity in cultured spinal motor neurons. J Neurosci Res. 2000;61(4):443–8.PubMedCrossRefGoogle Scholar
  155. Valikovics A, Csanyi A, Nemeth L. Study of the effects of vinpocetin on cognitive functions. Ideggyogy Sz. 2012;65(3-4):115–20.PubMedGoogle Scholar
  156. Van Staveren WC, Steinbusch HW, Markerink-Van Ittersum M, Repaske DR, Goy MF, Kotera J, Omori K, Beavo JA, De Vente J. mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain. J Comp Neurol. 2003;467(4):566–80. doi: 10.1002/cne.10955.PubMedCrossRefGoogle Scholar
  157. Vanmierlo T, Creemers P, Akkerman S, van Duinen M, Sambeth A, De Vry J, Uz T, Blokland A, Prickaerts J. The PDE4 inhibitor roflumilast improves memory in rodents at non-emetic doses. Behav Brain Res. 2016;303:26–33. doi: 10.1016/j.bbr.2016.01.031.PubMedCrossRefGoogle Scholar
  158. Vardigan JD, Converso A, Hutson PH, Uslaner JM. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 attenuates a scopolamine-induced deficit in a novel rodent attention task. J Neurogenet. 2011;25(4):120–6. doi: 10.3109/01677063.2011.630494.PubMedCrossRefGoogle Scholar
  159. Vereczkey L. Pharmacokinetics and metabolism of vincamine and related compounds. Eur J Drug Metab Pharmacokinet. 1985;10(2):89–103.PubMedCrossRefGoogle Scholar
  160. Wang C, Yang XM, Zhuo YY, Zhou H, Lin HB, Cheng YF, JP X, Zhang HT. The phosphodiesterase-4 inhibitor rolipram reverses Abeta-induced cognitive impairment and neuroinflammatory and apoptotic responses in rats. Int J Neuropsychopharmacol. 2012;15(6):749–66. doi: 10.1017/s1461145711000836.PubMedCrossRefGoogle Scholar
  161. Wang ZZ, Zhang Y, Zhang HT, Li YF. Phosphodiesterase: an interface connecting cognitive deficits to neuropsychiatric and neurodegenerative diseases. Curr Pharm Des. 2015;21(3):303–16.PubMedCrossRefGoogle Scholar
  162. Wechsler D. Die Messung der Intelligenz Erwachsener. Textband zum Hamburg-Wechsler-Intelligenztest für Erwachsene (HAWIE); Deutsche Bearbeitung Anne von Hardesty, und Hans Lauber; 1956.Google Scholar
  163. Wei JY, Roy DS, Leconte L, Barnstable CJ. Molecular and pharmacological analysis of cyclic nucleotide-gated channel function in the central nervous system. Prog Neurobiol. 1998;56(1):37–64.PubMedCrossRefGoogle Scholar
  164. Winters BD, Bussey TJ. Transient inactivation of perirhinal cortex disrupts encoding, retrieval, and consolidation of object recognition memory. J Neurosci. 2005;25(1):52–61. doi: 10.1523/jneurosci.3827-04.2005.PubMedCrossRefGoogle Scholar
  165. Yuan J, Zhang R, Yang Z, Lee J, Liu Y, Tian J, Qin X, Ren Z, Ding H, Chen Q, Mao C, Tang J. Comparative effectiveness and safety of oral phosphodiesterase type 5 inhibitors for erectile dysfunction: a systematic review and network meta-analysis. Eur Urol. 2013;63(5):902–12. doi: 10.1016/j.eururo.2013.01.012.PubMedCrossRefGoogle Scholar
  166. Zhang R, Wang Y, Zhang L, Zhang Z, Tsang W, Lu M, Zhang L, Chopp M. Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke. 2002;33(11):2675–80.PubMedCrossRefGoogle Scholar
  167. Zhang J, Guo J, Zhao X, Chen Z, Wang G, Liu A, Wang Q, Zhou W, Xu Y, Wang C. Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice. Behav Brain Res. 2013;250:230–7. doi: 10.1016/j.bbr.2013.05.017.PubMedCrossRefGoogle Scholar
  168. Zusman RM, Morales A, Glasser DB, Osterloh IH. Overall cardiovascular profile of sildenafil citrate. Am J Cardiol. 1999;83(5A):35C–44C.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pim R. A. Heckman
    • 1
    • 2
  • Arjan Blokland
    • 2
  • Jos Prickaerts
    • 1
    Email author
  1. 1.Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience, Maastricht UniversityMaastrichtThe Netherlands
  2. 2.Department of Neuropsychology and PsychopharmacologyMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations