Genetic Understanding of Stroke Treatment: Potential Role for Phosphodiesterase Inhibitors

  • Anjana MunshiEmail author
  • Satrupa Das
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 17)


Phosphodiesterase (PDE) gene family is a large family having at least 21 genes and multiple versions (isoforms) of the phosphodiesterase enzymes. These enzymes catalyze the inactivation of intracellular mediators of signal transduction such as cAMP and cGMP and therefore, play a pivotal role in various cellular functions. PDE inhibitors (PDEI) are drugs that block one or more of the five subtypes of the PDE family and thereby prevent inactivation of the intracellular cAMP and cGMP by the respective PDE-subtypes. The first clinical use of PDEI was reported almost three decades ago. Studies later found the ability of these compounds to increase the levels of ubiquitous secondary messenger molecules that can cause changes in vascular tone, cardiac function and other cellular events and thus these findings paved the way for their use in various medical emergencies. PDEs are found to be distributed in many tissues including brain. Therefore, new therapeutic agents in the form of PDEI are being explored in neurodegenerative diseases including stroke. Although studies have revealed their use in cerebral infarction prevention, their full-fledged application in times of neurological emergency or stroke in specific has been very limited so far. Nevertheless, recent investigations suggest PDE4 and PDE5 inhibitors to play a vital role in mitigating stroke symptoms by modulating signaling mechanisms in PDE pathway. Further, extensive research in terms of their pharmacological properties like dosing, drug specific activities, use of simultaneous medications, ancillary properties of these compounds and studies on adverse drug reactions needs to be carried out to set them as standard drugs of use in stroke.


Phosphodiesterases Phosphodiesterase inhibitors Stroke Rolipram Therapeutic potential 


Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. Apostolakis S, Lip GY, Shantsila E. Pharmacokinetic considerations for antithrombotic therapies in stroke. Expert Opin Drug Metab Toxicol. 2013;9:1335–47.PubMedCrossRefGoogle Scholar
  2. Barnes PJ, Chung KF, Page CP. Inflammatory mediators and asthma. Pharmacol Rev. 1988;40:49–84.PubMedGoogle Scholar
  3. Baztán JJ, Pérez-Martínez DA, Fernández-Alonso M, Aguado-Ortego R, Bellando-Alvarez G, de la Fuente-González AM. Prognostic factors of functional recovery in very elderly stroke patients. A one-year follow-up study. Rev Neurol. 2007;44:577–83.PubMedGoogle Scholar
  4. Beavo JA. Multiple phosphodiesterase isoenzymes: background, nomenclature, and implications. In: Beavo J, MD H, editors. Cyclic nucleotide phophodiesterases: structure, regulation and drug action, vol. 2. Chichester: Wiley; 1990. p. 3–19.Google Scholar
  5. Beglopoulos V, Shen J. Regulation of CRE-dependent transcription by presenilins: prospects for therapy of Alzheimer’s disease. Trends Pharmacol Sci. 2006;27:33–40.PubMedCrossRefGoogle Scholar
  6. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58:488–520.PubMedCrossRefGoogle Scholar
  7. Berge E, Abdelnoor M, Nakstad PH, Sandset PM. Low molecular-weight heparin versus aspirin in patients with acute ischaemic stroke and atrial fibrillation: a double-blind randomised study. HAEST Study Group. Heparin Acute Embolic Stroke Trial Lancet. 2000;355:1205–10.PubMedCrossRefGoogle Scholar
  8. Berkels R, Klotz T, Sticht G, Englemann U, Klaus W. Modulation of human platelet aggregation by the phosphodiesterase type 5 inhibitor sildenafil. J Cardiovasc Pharmacol. 2001;37:413–21.PubMedCrossRefGoogle Scholar
  9. Bolger G, Michaeli T, Martins T, St John T, Steiner B, Rodgers L, Riggs M, Wigler M, Ferguson K. A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs. Mol Cell Biol. 1993;13:6558–71.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Boolell M, Allen MJ, Ballard SA, Gepi-attee S, Muirhead GJ, Naylor AM, Osterloh IH, Gingell C. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res. 1996;8:47–52.PubMedGoogle Scholar
  11. Born GVR, Cross MJ. Inhibition of the aggregation of blood platelets by substances related to adenosine diphosphate. J Physiol. 1963;166:29P–30P.CrossRefGoogle Scholar
  12. Boswell-Smith V, Spina D, Page CP. Phosphodiesterase inhibitors. Br J Pharmacol. 2006;147:S252–7.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bremer YA, Salloum F, Ockaili R, Chou E, Moskowitz WB, Kukreja RC. Sildenafil citrate (Viagra) induces cardioprotective effects after ischemia/reperfusion injury in infant rabbits. Pediatr Res. 2005;57:22–7.PubMedCrossRefGoogle Scholar
  14. Chan CW, Hoar H, Pattinson K, Bradwell AR, Wright AD, Imray CH. Effect of sildenafil and acclimatization on cerebral oxygenation at altitude. Clin Sci (Lond). 2005;109:319–24.CrossRefGoogle Scholar
  15. Clarke WR, Uezono S, Chambers A, Doepfner P. The type III phosphodiesterase inhibitor milrinone and type V PDE inhibitor dipyridamole individually and sinergistically reduce elevated pulmonary vascular resistance. Pulm Pharmacol. 1994;7:81–9.PubMedCrossRefGoogle Scholar
  16. Colucci WS. Cardiovascular effects of milrinone. Am Heart J. 1991;121:1945–7.PubMedCrossRefGoogle Scholar
  17. Coquil JF, Franks DJ, Wells JN, Dupuis M, Hamet P. Characteristics of a new binding protein distinct from the kinase for guanosine 3′:5′-monophosphate in rat platelets. Biochim Biophys Acta. 1980;631:148–65.PubMedCrossRefGoogle Scholar
  18. Corbin JD, Francis SH. Pharmacology of phosphodiesterase-5 inhibitors. Int J Clin Pract. 2002;56:453–9.PubMedGoogle Scholar
  19. Cristina RT, Nagy I. Drotaverine (No-SpaR) effectiveness in horse colic therapy. Vet Clin Pathol. 2003;32:223.Google Scholar
  20. Dal Piaz V, Giovannoni MP. Phosphodiesterase 4 inhibitors, structurally unrelated to rolipram, as promising agents for the treatment of asthma and other pathologies. Eur J Med Chem. 2000;35:463–80.PubMedCrossRefGoogle Scholar
  21. Das S, Maulik N, Das DK, Kadowitz PJ, Bivalacqua TJ. Cardioprotection with sildenafil, a selective inhibitor of cyclic3′,5′-monophosphate-specific phosphodiesterase 5. Drugs Exp Clin Res. 2002;28:213–9.PubMedGoogle Scholar
  22. Das S, Roy S, Munshi A. Association between PDE4D gene and ischemic stroke: recent advancements. Int J Neurosci. 2016;126(7):577–83.Google Scholar
  23. Das A, Xi L, Kukreja RC. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem. 2005;280:12944–55.PubMedCrossRefGoogle Scholar
  24. Das A, Salloum FN, Xi L, Rao YJ, Kukreja RC. ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemiareperfusion injury in mice. Am J Physiol. 2009;296:H1236–43.Google Scholar
  25. Dickinson NT, Jang EK, Haslam RJ. Activation of cGMP-stimulated phosphodiesterase by nitroprusside limits cAMP accumulation in human platelets: effects on platelet aggregation. Biochem J. 1997;323:371–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Diebold I, Djordjevic T, Petry A, Hatzelmann A, Tenor H, Hess J, Görlach A. Phosphodiesterase 2 mediates redox sensitive endothelial cell proliferation and angiogenesis by thrombin via Rac1 and NADPH oxidase 2. Circ Res. 2009;104:1169–77.PubMedCrossRefGoogle Scholar
  27. Diener HC, Cunha L, Forbes C, Sivenius J, Smets P, Lowenthal A. European Stroke Prevention Study 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J Neurol Sci. 1996;143:1–13.PubMedCrossRefGoogle Scholar
  28. du Toit EF, Rossouw E, Salie R, Opie LH, Lochner A. Effect of sildenafil on reperfusion function, infarct size, and cyclic nucleotide levels in the isolated rat heart model. Cardiovasc Drugs Ther. 2005;19:23–31.PubMedCrossRefGoogle Scholar
  29. Elkeles RS, Hampton JR, Honour AJ, Mitchell JR, Prichard JS. Effect of a pyrido-pyrimidine compound on platelet behaviour in vitro and in vivo. Lancet. 1968;2:751–4.PubMedCrossRefGoogle Scholar
  30. Elrod JW, Greer JJ, Lefer DJ. Sildenafil-mediated acute cardioprotection is independent of the NO/cGMP pathway. Am J Physiol Heart Circ Physiol. 2007;292:H342–7.PubMedCrossRefGoogle Scholar
  31. Feigin VL, Lawes CM, Bennet DA, Anderson CS. Stroke epidemiology: a review of population- based studies of incidence, prevalence, and case- fatality in the late 20th century. Lancet Neurol. 2003;2:43–53.PubMedCrossRefGoogle Scholar
  32. Feneck R. Phosphodiesterase inhibitors and the cardiovascular system. Continuing education in anesthesia. Crit Care Pain. 2007;7:203–7.Google Scholar
  33. Floyd CN, Passacquale G, Ferro A. Comparative pharmacokinetics and pharmacodynamics of platelet adenosine diphosphate receptor antagonists and their clinical implications. Clin Pharmacokinet. 2012;51:429–42.PubMedCrossRefGoogle Scholar
  34. Francis SH, Lincoln TM, Corbin JD. Characterization of a novel cGMP binding protein from rat lung. J Biol Chem. 1980;255:620–6.PubMedGoogle Scholar
  35. Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest. 2004;114:1624–34.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gotoh F, Tohgi H, Hirai S, Terashi A, Fukuuchi Y, Otomo E, Shinohara Y, Itoh E, Matsuda T, Sawada T, Yamaguchi T, Nishimaru K, Ohashi Y. Cilostazol Stroke Prevention Study: a placebo-controlled double-blind trial for secondary prevention of cerebral infarction. J Stroke Cerebrovasc Dis. 2000;9:147–57.PubMedCrossRefGoogle Scholar
  37. Gresele P, Zoja C, Deckmyn H, Arnout J, Vermylen J, Verstraete M. Dipyridamole inhibits platelet aggregation in whole blood. Thromb Haemost. 1983;30:852–6.Google Scholar
  38. Gresele P, Arnout J, Deckmyn H, Vermylen J. Mechanism of the antiplatelet action of dipyridamole in whole blood: modulation of adenosine concentration and activity. Thromb Haemost. 1986;55:12–8.PubMedGoogle Scholar
  39. Gresele P, Falcinelli E, Momi S. Potentiation and priming of platelet activation: a potential target for antiplatelet therapy. Trends Pharmacol Sci. 2008;29:352–60.PubMedCrossRefGoogle Scholar
  40. Gretarsdottir S, Thorleifsson G, Reynisdottir ST, Manolescu A, Jonsdottir S, Jonsdottir T, Gudmundsdottir T, Bjarnadottir SM, Einarsson OB, Gudjonsdottir HM, Hawkins M, Gudmundsson G, Gudmundsdottir H, Andrason H, Gudmundsdottir AS, Sigurdardottir M, Chou TT, Nahmias J, Goss S, Sveinbjörnsdottir S, Valdimarsson EM, Jakobsson F, Agnarsson U, Gudnason V, Thorgeirsson G, Fingerle J, Gurney M, Gudbjartsson D, Frigge ML, Kong A, Stefansson K, Gulcher JR. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat Genet. 2003;35:131–8.PubMedCrossRefGoogle Scholar
  41. Halkes PH, van Gijn J, Kappelle LJ, Koudstaal PJ, Algra A, ESPRIT Study Group. Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): randomised controlled trial. Lancet. 2006;367:1665–73.PubMedCrossRefGoogle Scholar
  42. Hansen G, Jin S, Umetsu DT, Conti M. Absence of muscarinic cholinergic airway responses in mice deficient in the cyclic nucleotide phosphodiesterase PDE4D. Proc Natl Acad Sci U S A. 2000;97:6751–6.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hayashi M, Shimada Y, Nishimura Y, Hama T, Tanaka T. Genomic organization, chromosomal localization, and alternative splicing of the human phosphodiesterase 8VB gene. Biochem Biophys Res Commun. 2002;297:1253–8.PubMedCrossRefGoogle Scholar
  44. Hebb AL, Robertson HA, Denovan-Wright EM. Striatal phosphodiesterase mRNA and protein levels are reduced in Huntington’s disease transgenic mice prior to the onset of neuroscience. Neuroscience. 2004;123:967–81.PubMedCrossRefGoogle Scholar
  45. Hermann D, Chopp M. Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol. 2012;11:369–80.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Iimura O, Kusano E, Amemiya M, Muto S, Ikeda U, Shimada K, Asano Y. Dipyridamole enhances interleukin 1 beta stimulated nitric oxide production by cultured rat vascular smooth muscle cells. Eur J Pharmacol. 1996;296:319–26.PubMedCrossRefGoogle Scholar
  47. International Stroke Trial Collaborative Group. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. Lancet. 1997;349:1569–81.CrossRefGoogle Scholar
  48. Iuliano L, Colavita AR, Camastra P, Bello V, Quintarelli C, Alessandroni M, Piovella F, Violi F. Protection of low density lipoprotein oxidation at chemical and cellular level by the antioxidant drug dipyridamole. Br J Pharmacol. 1996;119:1438–43.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Iwamoto T, Kin K, Miyazaki K, Shin K, Takasaki M. Recovery of platelet function after withdrawal of cilostazol administered orally for a long period. J Atheroscler Thromb. 2003;10:348–54.PubMedCrossRefGoogle Scholar
  50. Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, PW MM Jr, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H. American Heart Association Stroke Council, Council on Cardiovascular Nursing, Council on Peripheral Vascular Disease, and Council on Clinical Cardiology. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American heart Association/American stroke association. Stroke. 2013;44:870–947.PubMedCrossRefGoogle Scholar
  51. Jiang X, Li J, Paskind M, Epstein PM. Inhibition of calmodulin-dependent phosphodiesterase induces apoptosis in human leukemic cells. Proc Natl Acad Sci U S A. 1996;93:11236–41.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jin SL, Richard FJ, Kuo WP, D’Ercole AJ, Conti M. Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4Ddeficient mice. Proc Natl Acad Sci U S A. 1999;96:11998–2003.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kanes SJ, Tokarczyk J, Siegel SJ, Bilker W, Abel T, Kelly MP. Rolipram: a specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience. 2007;144:239–46.PubMedCrossRefGoogle Scholar
  54. Kato H, Araki T, Itoyama Y, Kogure K. Rolipram, a cyclic AMPselective phosphodiesterase inhibitor, reduces neuronal damage following cerebral ischemia in the gerbil. Eur J Pharmacol. 1995;272:107–10.PubMedCrossRefGoogle Scholar
  55. Kim HH, Liao JK. Translational therapeutics of dipyridamole. Arterioscler Thromb Vasc Biol. 2008;28:s39–42.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kraft P, Schwarz T, Göb E, Heydenreich N, Brede M, Meuth SG, Kleinschnitz C. The phosphodiesterase 4 inhibitor rolipram protects from ischemic strokein mice by reducing blood-brain-barrier damage, inflammation and thrombosis. Exp Neurol. 2013;247:80–90.PubMedCrossRefGoogle Scholar
  57. Kuhlenbaumer G, Berger K, Huge A, Lange E, Kessler C, John U, Funke H, Nabavi DG, Stögbauer F, Ringelstein EB, Stoll M. Evaluation of single nucleotide polymorphisms in the phosphodiesterase 4D gene (PDE4D) and their association with ischaemic stroke in a large German cohort. J Neurol Neurosurg Psychiatry. 2006;77:521–4.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lawrence E, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R, Wolfe CD. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001;32:1279–84.PubMedCrossRefGoogle Scholar
  59. Li Q, Himmel HM, Ravens U. Effects of the new phosphodiesterase- III inhibitor R80122 on contractility and calcium current in human cardiac tissue. J Cardiovasc Pharmacol. 1994;24:133–43.PubMedCrossRefGoogle Scholar
  60. Lima LM, Ormelli CB, Brito FF, Miranda AL, Fraga CA, Barreiro EJ. Synthesis and antiplatelet evaluation of novel aryl-sulfonamide derivatives, from natural safrole. Pharm Acta Helv. 1999;73:281–92.PubMedCrossRefGoogle Scholar
  61. Lipworth BJ. Phosphodiesterase – 4 inhibitors for asthma and chronic obstructive pulmonary disease. Lancet. 2005;365:167–75.PubMedCrossRefGoogle Scholar
  62. Liu X, Zhu R, Li L, Deng S, Li Q, He Z. Genetic Polymorphism in PDE4D gene and risk of ischemic stroke in Chinese population: a meta-analysis. PLoS One. 2013;8:e66374.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Livi GP, Kmetz P, McHale MM, Cieslinski LB, Sathe GM, Taylor DP, Davis RL, Torphy TJ, Balcarek JM. Cloning and expression of cDNA for a human low-Km, rolipram-sensitive cyclic AMP phosphodiesterase. Mol Cell Biol. 1990;10:2678–86.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006;367:1747–57.PubMedCrossRefGoogle Scholar
  65. Loughney K, Martins TJ, Harris EA, Sadhu K, Hicks JB, Sonnenburg WK, Beavo JA, Ferguson K. Isolation and characterization of cDNAs corresponding to two human calcium, calmodulin-regulated, 3’,5’-cyclic nucleotide phosphodiesterases. J Biol Chem. 1996;271:796–806.PubMedCrossRefGoogle Scholar
  66. Manns JM, Brenna KJ, Colman RW, Sheth SB. Differential regulation of human platelet responses by cGMP inhibited and stimulated cAMP phosphodiesterases. Thromb Haemost. 2002;87:873–9.PubMedGoogle Scholar
  67. Matsushita T, Kubo M, Yonemoto K, Ninomiya T, Ashikawa K, Liang B, Hata J, Doi Y, Kitazono T, Ibayashi S, Iida M, Kiyohara Y, Nakamura Y. Lack of association between variations of PDE4D and ischemic stroke in the Japanese population. Stroke. 2009;40:1245–51.PubMedCrossRefGoogle Scholar
  68. McLaughlin MM, Cieslinski LB, Burman M, Torphy TJ, Livi A. Low-Km, rolipram sensitive, cAMP-specific phosphodiesterase from human brain. Cloning and expression of cDNA, biochemical characterization of recombinant protein, and tissue distribution of mRNA. J Biol Chem. 1993;268:6470–6.PubMedGoogle Scholar
  69. Meschia JF. Therapeutic implications of genetic research in ischemic stroke. Northeast Fla Med. 2007;58:20–5.Google Scholar
  70. Munshi A, Babu MS, Kaul S, Shafi G, Anila AN, Alladi S, Jyothy A. Phosphodiesterase 4D (PDE4D) gene variants and the risk of ischemic stroke in a South Indian population. J Neurol Sci. 2009;285:142–5.PubMedCrossRefGoogle Scholar
  71. Murray KJ. Phosphodiesterase Va inhibitors. Drug News Perspect. 1993;6:150–6.Google Scholar
  72. Nagy O, Hajnal A, Parratt JR, Vegh A. Sildenafil (Viagra) reduces arrhythmia severity during ischaemia 24 h after oral administration in dogs. Br J Pharmacol. 2004;141:549–51.PubMedPubMedCentralCrossRefGoogle Scholar
  73. NICE Guidelines. CG68: diagnosis and initial management of acute stroke and transient ischaemic attack (TIA). July 2008, updated January 2011. Available from:
  74. Nikulina E, Tidwell JL, Dai HN, Bregman BS, Filbin MT. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci U S A. 2004;101:8786–90.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ockaili R, Salloum F, Hawkins J, Kukreja RC. Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial KATP channels in rabbits. Am J Physiol Heart Circ Physiol. 2002;283:H1263–9.PubMedCrossRefGoogle Scholar
  76. Pagès L, Gavaldà A, Lehner MD. PDE4 inhibitors: a review of current developments (2005–2009). Expert Opin Ther Pat. 2009;19:1501–19.PubMedCrossRefGoogle Scholar
  77. Pascual C, Romay C. Effect of antioxidant and chemiluminescence produced by reactive oxygen species. J Biolumin Chemilumin. 1992;7:123–32.PubMedCrossRefGoogle Scholar
  78. Polli JW, Kincaid RL. Molecular cloning of DNA encoding a calmodulin-dependent phosphodiesterase enriched in striatum. Proc Natl Acad Sci U S A. 1992;89:11079–83.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Prickaerts J, Sik A, van Staveren WC, Koopmans G, Steinbusch HW, van der Staay FJ, de Vente J, Blokland A. Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem Int. 2004;45:915–28.PubMedCrossRefGoogle Scholar
  80. Rosanio S, Ye Y, Atar S, et al. Enhanced cardioprotection against ischemia-reperfusion injury with combining sildenafil with low-dose atorvastatin. Cardiovasc Drugs Ther. 2006;20:27–36.PubMedCrossRefGoogle Scholar
  81. Rosengarten B, Schermuly RT, Voswinckel R, et al. Sildenafil improves dynamic vascular function in the brain: Studies in patients with pulmonary hypertension. Cerebrovasc Dis. 2006;21:194–200.PubMedCrossRefGoogle Scholar
  82. Rudd RM, Gellert AR, Studdy PR, Geddes DM. Inhibition of exercise induced asthma by an orally absorbed mast cell stabilizer (M&B22948). Br J Dis Chest. 1983;77:78–86.PubMedCrossRefGoogle Scholar
  83. Saleheen D, Bukhari S, Haider SR, Nazir A, Khanum S, Shafqat S, Anis MK, Frossard P. Association of phosphodiesterase 4D gene with ischemic stroke in a Pakistani population. Stroke. 2005;36:2275–7.PubMedCrossRefGoogle Scholar
  84. Salloum F, Yin C, Xi L, Kukreja RC. Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res. 2003;92:595–7.PubMedCrossRefGoogle Scholar
  85. Salloum FN, Takenoshita Y, Ockaili RA, et al. Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial K(ATP) channels when administered at reperfusion following ischemia in rabbits. J Mol Cell Cardiol. 2007;42:453–8.PubMedCrossRefGoogle Scholar
  86. Sasaki T, Kitagawa K, Omura-Matsuoka E, Todo K, Terasaki Y, Sugiura S, Hatazawa J, Yagita Y, Hori M. The phosphodiesterase inhibitor rolipram promotes survival of newborn hippocampal neurons after ischemia. Stroke. 2007;38:1597–605.PubMedCrossRefGoogle Scholar
  87. Schwartz L, Bourassa G, Lesperance J, Eastwood C, Kazim F. Aspirin and dipyridamole in the prevention of restenosis after percutaneous transluminal coronary angioplasty. N Engl J Med. 1988;318:1714–9.PubMedCrossRefGoogle Scholar
  88. Seiler S, Arnold AJ, Grove RI, Fifer CA, Keely SL Jr, Stanton HC. Effects of anagrelide on platelet cAMP levels, cAMP-dependent protein kinase and thrombin-induced Ca++ fluxes. J Pharmacol Exp Ther. 1987;243:767–74.PubMedGoogle Scholar
  89. Shinohara Y, Katayama Y, Uchiyama S, Yamaguchi T, Handa S, Matsuoka K, Ohashi Y, Tanahashi N, Yamamoto H, Genka C, Kitagawa Y, Kusuoka H, Nishimaru K, Tsushima M, Koretsune Y, Sawada T, Hamada C. CSPS 2 group. Cilostazol for prevention of secondary stroke (CSPS 2): an aspirin-controlled, double-blind, randomised non-inferiority trial. Lancet Neurol. 2010;90:959–68.CrossRefGoogle Scholar
  90. Shrör K. The pharmacology of cilostazol. Diabetes Obes Metab. 2002;4:14–9.CrossRefGoogle Scholar
  91. Silverstein MN, Petitt RM, Solberg LA, Fleming JS, Knight RC, Schacter LP. Anagrelide: a new drug for treating thrombocytosis. N Engl J Med. 1988;318:1292–4.PubMedCrossRefGoogle Scholar
  92. Sonnenburg WK, Seger D, Kwak KS, Huang J, Charbonneau H, Beavo JA. Identification of inhibitory and calmodulin-binding domains of the PDE1A1 and PDE1A2 calmodulin-stimulated cyclic nucleotide phosphodiesterases. J Biol Chem. 1995;270:30989–1000.PubMedCrossRefGoogle Scholar
  93. Sorkin EM, Markham A. Cilostazol. Drugs Aging. 1999;14:63–71.PubMedCrossRefGoogle Scholar
  94. Staton JM, Sayer MS, Hankey GJ, Attia J, Thakkinstian A, Yi Q, Cole VJ, Baker R, Eikelboom JW. Association between phosphodiesterase 4D gene and ischaemic stroke. J Neurol Neurosurg Psychiatry. 2006;77:1067–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sun B, Li H, Shakur Y, Hensley J, Hockman S, Kambayashi J, Manganiello VC, Liu Y. Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. Cell Signal. 2007;19:1765–71.PubMedCrossRefGoogle Scholar
  96. Suvarna NU, O’Donnell JM. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. J Pharmacol Exp Ther. 2002;302:249–56.PubMedCrossRefGoogle Scholar
  97. Swinnen JV, Joseph D, Conti R. Molecular cloning of rat homologues of the Drosophila melanogaster dunce cAMP phosphodiesterase: evidence for a family of genes. Proc Natl Acad Sci U S A. 1989;86:5325–9.PubMedPubMedCentralCrossRefGoogle Scholar
  98. The Publications Committee for the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) Investigators. Low molecular weight heparinoid, ORG 10172 (danaparoid), and outcome after acute ischemic stroke: a randomized controlled trial. JAMA. 1998;279:1265–72.CrossRefGoogle Scholar
  99. Thiele J, Kvasnicka HM, Schmitt-Graeff A. Effects of anagrelide on megakaryopoiesis and platelet production. Semin Thromb Hemost. 2006;32:352–61.PubMedCrossRefGoogle Scholar
  100. Torphy TJ, Undem BJ. Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax. 1991;46:512–23.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Uchiyama S, Demaerschalk BM, Goto S, Shinohara Y, Gotoh F, Stone WM, Money SR, Kwon SU. Stroke prevention by cilostazol in patients with atherothrombosis: meta-analysis of placebo-controlled randomized trials. J Stroke Cerebrovasc Dis. 2009;18:482–90.PubMedCrossRefGoogle Scholar
  102. Wang X, Fisher P, Xi L, Kukreja RC. Activation of mitochondrial calcium-activated and ATP-sensitive potassium channels is essential for sildenafil-induced cardioprotection. J Mol Cell Cardiol. 2008;44:105–13.PubMedCrossRefGoogle Scholar
  103. Weintraub WS, Foster J, Culler SD, Becker ER, Parker K, Zhang Z, Kolm P, Douglas JS Jr. Cilostazol for RESTenosis trial. Cilostazol for RESTenosis trial: methods for the economic and quality of life supplement to the cilostazol for RESTenosis (CREST) trial. J Invasive Cardiol. 2004;16:257–9.PubMedGoogle Scholar
  104. Wells JN, Baird CE, YJ W, Hardman JG. Cyclic nucleotide phosphodiesterase activities of pig coronary arteries. Biochim Biophys Acta. 1975;384:430–42.PubMedCrossRefGoogle Scholar
  105. Weyrich AS, Denis MM, Kuhlmann-Eyre JR, Spencer ED, Dixon DA, Marathe GK, McIntyre TM, Zimmerman GA, Prescott SM. Dipyridamole selectively inhibits inflammatory gene expression in platelet-monocyte aggregates. Circulation. 2005;111:633–42.PubMedCrossRefGoogle Scholar
  106. Wright PJ. Comparison of Phosphodiesterase Type 5 (PDE5) Inhibitors. Int J Clin Pract. 2006;60:967–75.PubMedCrossRefGoogle Scholar
  107. Yan C, Zhao AZ, Bentley J, Beavo K. The calmodulin dependent phosphodiesterase gene PDE1C encodes several functionally different splice variants in a tissue-specific manner. J Biol Chem. 1996;271:25699–706.PubMedCrossRefGoogle Scholar
  108. Yang F, Liu S, Yu C, Wang SJ, Paganini-Hill A, Fisher MJ. PDE4 regulates tissue plasminogen activator expression of human brain microvascular endothelial cells. Thromb Res. 2012;129:750–3.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Young JM. Expert opinion: vardenafil. Expert Opin Investig Drugs. 2002;1:1487–96.CrossRefGoogle Scholar
  110. Yu J, Wolda SL, Frazier AL, Florio VA, Martins TJ, Snyder PB, Harris EA, McCaw KN, Farrell CA, Steiner B, Bentley JK, Beavo JA, Ferguson K, Gelinas R. Identification and characterisation of a human calmodulin-stimulated phosphodiesterase PDE1B1. Cell Signal. 1997;9:519–29.PubMedCrossRefGoogle Scholar
  111. Zhang HT, Huang Y, Jin SL, Frith S, Suvarna N, Conti M, O’Donnell JM. Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme. Neuropsychopharmacology. 2002a;27:587–95.PubMedGoogle Scholar
  112. Zhang R, Wang Y, Zhang L, Zhang Z, Tsang W, Lu M, Zhang L, Chopp M. Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke. 2002b;33:2675–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Human Genetics and Molecular MedicineSchool of Health Sciences, Central University of PunjabBathindaIndia
  2. 2.Institute of Genetics and Hospital for Genetic DiseasesOsmania UniversityHyderabadIndia
  3. 3.Dr. NTR University of Health SciencesVijayawadaIndia

Personalised recommendations