Moments and Combinations of Positive Linear Operators

  • Vijay Gupta
  • Gancho Tachev
Part of the Developments in Mathematics book series (DEVM, volume 50)


The convergence of a sequence of positive linear operators (abbrev. p.l.o.) is one of the important areas of researchers related to approximation theory. Apart from the earlier known examples several new sequences of p.l.o. were introduced and their approximation properties have been discussed in the last few decades. There are several books in approximation theory, which deal with the linear and nonlinear operators of different kind. We mention here some of the books available in the related area, which are due to DeVore [42], DeVore–Lorentz [43], Ditzian–Totik [50] and Pǎltǎnea [153].


  1. 9.
    J.A. Adell, J. Bustamante, J.M. Quesada, Estimates for the moments of Bernstein polynomials. J. Math. Anal. Appl. 432, 114–128 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 10.
    J.A. Adell, J. Bustamante, J.M. Quesada, Sharp upper and lower bounds for moments of Bernstein polynomials. Appl. Math. Comput. 265, 723–732 (2015)MathSciNetGoogle Scholar
  3. 12.
    O. Agratini, B.D. Vecchia, Mastroianni operators revisted. Facta Univ. Niś Ser. Math. Inform. 19, 53–63 (2004)zbMATHGoogle Scholar
  4. 14.
    P.N. Agrawal, V. Gupta, On the iterative combination of Phillips operators. Bull. Inst. Math. Acad. Sin. 18(4), 361–368 (1990)MathSciNetzbMATHGoogle Scholar
  5. 18.
    A. Aral, V. Gupta, R.P. Agarwal, Applications of q Calculus in Operator Theory, vol. XII (Springer, New York, 2013), p. 262CrossRefzbMATHGoogle Scholar
  6. 21.
    V.A. Baskakov, An instance of a sequence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR 113(2), 249–251 (1957)MathSciNetzbMATHGoogle Scholar
  7. 26.
    S.N. Bernstein, Sur les recherches récentes relatives á la meilleure approximation des fonctions continues par les polynômes, in Proceedings of 5th International Mathematics Congress, vol. 1, pp. 256–266 (1912)Google Scholar
  8. 32.
    C. de Boor, A Practical Guide to Splines (Springer, New York, 1978)CrossRefzbMATHGoogle Scholar
  9. 38.
    A. Delgado, T. Pérez, Szász-Mirakjan operators and classical Laguerre orthogonal polynomials (2005, preprint)Google Scholar
  10. 42.
    R.A. DeVore, The Approximation of Continuous Functions by Positive Linear Operators. Lecture Notes in Mathematics, vol. 293 (Springer, Berlin/New York, 1972)Google Scholar
  11. 43.
    R.A. DeVore, G.G. Lorentz, Constructive Approximation (Springer, Berlin, 1993)CrossRefzbMATHGoogle Scholar
  12. 50.
    Z. Ditzian, V. Totik, Moduli of Smoothness (Springer, Berlin, 1987)CrossRefzbMATHGoogle Scholar
  13. 52.
    J.L. Durrmeyer, Une formule ď inversion de la transformee de Laplace applications á la theórie desmoments. Thése de 3 e cycle. Faculté des Sciences de ĺ Université de Paris (1967)Google Scholar
  14. 55.
    G.F. Farin, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide (Academic Press, New York, 1988)zbMATHGoogle Scholar
  15. 63.
    S.G. Gal, Approximation by Complex Bernstein and Convolution-Type Operators (World Scientific, Singapore 2009)CrossRefzbMATHGoogle Scholar
  16. 65.
    S.G. Gal, Overconvergence in Complex Approximation (Springer, New York, 2013)CrossRefzbMATHGoogle Scholar
  17. 96.
    V. Gupta, P.N. Agrawal, Linear combinations of Phillips operators. Indian Acad. Math. 11(2), 106–114 (1989)MathSciNetzbMATHGoogle Scholar
  18. 97.
    V. Gupta, P.N. Agrawal, Lp-approximation by iterative combination of Phillips operators. Publ. Inst. Math. (Beograd) 52(66), 101–109 (1992)Google Scholar
  19. 98.
    V. Gupta, R.P. Agarwal, Convergence Estimates in Approximation Theory (Springer, Cham, 2014)CrossRefzbMATHGoogle Scholar
  20. 105.
    V. Gupta, G. Tachev, Approximation by Szász-Mirakyan Baskakov operators. J. Appl. Funct. Anal. 9(3–4), 308–319 (2014)MathSciNetzbMATHGoogle Scholar
  21. 111.
    V. Gupta, T.M. Rassias, J. Sinha, A survey on Durrmeyer operators, in Contributions in Mathematics and Engineering, ed. by P.M. Pardalos, T.M. Rassias (Springer International Publishing, Switzerland, 2016), pp. 299–312CrossRefGoogle Scholar
  22. 113.
    M. Heilmann, Approximation on [0, ) durch das Verfahren der Operatoren von Baskakov–Durrmeyer type, Dissertation, Univ. Dortmund, 1987Google Scholar
  23. 115.
    M. Heilmann, Erhöhung der Konvergenzgeschwindigkeit bei der Approximation von Funktionen mit Hilfe von Linearkombinationen spezieller positiver linearer Operatoren. Habilitationsschrift, Universität Dortmund, 1992Google Scholar
  24. 119.
    M. Heilmann, G. Tachev, Linear combinations of genuine Szasz–Mirakjan–Durrmeyer operators, in Advances in Applied Mathematics and Approximation Theory: Contributions from AMAT 2012 Conference, Turkey, ed. by G. Anastassiou, O. Duman. Springer Proceedings in Mathematics and Statistics (Springer, New York, 2012), pp. 85–106Google Scholar
  25. 134.
    G.G. Lorentz, Bernstein Polynomials. Mathematical Expositions, vol. 8 (University of Toronto Press, Toronto, 1953)Google Scholar
  26. 143.
    G. Mastroianni, Una generalizzatione dell’ operatore di Mirakyan. Rend. Acc. Sc. Fis. Mat. Napoli 48(4), 237–252 (1980)Google Scholar
  27. 144.
    G. Mastroianni, G. Milovanovic, Interpolation Processes, Basic Theory and Applications (Springer, Berlin/Heidelberg, 2008)CrossRefzbMATHGoogle Scholar
  28. 145.
    C.P. May, Saturation and inverse theorems for combinations of a class of exponential type operators. Can. J. Math. 28, 1224–1250 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 146.
    C.P. May, On Phillips operators. J. Approx. Theory 20, 315–322 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 148.
    C.A. Micchelli, The saturation class and iterates of Bernstein polynomials. J. Approx. Theory 8, 1–18 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 153.
    R. Pǎltǎnea, Approximation Theory Using Positive Linear Operators (Birkhäuser, Boston, 2004)zbMATHGoogle Scholar
  32. 160.
    G. Prasad, P.N. Agrawal, H.S. Kasana, Approximation of functions on [0, ] by a new sequence of modified Szász operators. Math. Forum. 6(2), 1–11 (1983)Google Scholar
  33. 161.
    R.S. Phillips, An inversion formula for Laplace transforms and semi groups of linear operators. Ann. Math. 59(2), 325–356 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 162.
    T.M. Rassias, V. Gupta (eds.), Mathematical Analysis, Approximation Theory and Their Applications. Springer Optimization and Its Applications, vol. 111 (Springer, Berlin, 2016)Google Scholar
  35. 163.
    R.K.S. Rathore, Linear combinations of linear positive operators and generating relations in special functions, Ph.D. Thesis, IIT Delhi, 1973Google Scholar
  36. 168.
    L.L. Schumaker, Spline Functions: Basic Theory (Wiley, New York, 1981)zbMATHGoogle Scholar
  37. 177.
    J. Szabados, P. Vértesi, Interpolation of Functions (World Scientific, Singapore, 1990)CrossRefzbMATHGoogle Scholar
  38. 178.
    O. Szász, Generalization of S. Bernstein’s polynomials to the infinite intervals. J. Res. Natl. Bur. Stand. 45, 239–245 (1950)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vijay Gupta
    • 1
  • Gancho Tachev
    • 2
  1. 1.Department of MathematicsNetaji Subhas Institute of TechnologyNew DelhiIndia
  2. 2.Department of MathematicsUniversity of Architecture Civil Engineering and GeodesySofiaBulgaria

Personalised recommendations