Improving Agronomic Efficiency of Mineral Fertilizers through Microdose on Sorghum in the Sub-arid Zone of Burkina Faso

  • B. Ouattara
  • B. B. Somda
  • I. Sermé
  • A. Traoré
  • D. Peak
  • F. Lompo
  • S. J. B. Taonda
  • Michel P. Sedogo
  • Andre Bationo
Chapter

Abstract

Maintaining and/or improving soil fertility under conditions of climatic deterioration remains one of the major challenges facing small-scale farmers of the sub-Saharan regions in ensuring their food production. To address this issue, trials combining mineral fertilizer microdosing, MD (2g NPK/seed hole), soil and water conservation (SWC) techniques (zaï associated or not with stone lines or grass strips) were conducted for three years with sorghum (local and improved varieties) on two sites in the north Sudanian zone of Burkina Faso. The main objective of the study was to analyze the effects of the different technology packages tested on sorghum yields and soil chemical characteristics. The results showed that the use of MD technique enabled to double sorghum grain yields. This effect was further enhanced when combined with SWC techniques (45%). The use of the improved sorghum variety increased grain yields by approximately 11%, 70% and 85% when combined with SWC, MD and SWC + MD techniques respectively. Regarding the impact of these technologies on soil fertility, plots developed with SWC techniques showed increases in total organic carbon, nitrogen and phosphorus contents as well as in available phosphorus between 30% and 80%.

Keywords

North Sudanian zone Organic fertilizer Rainwater management Soil fertility Sorghum varieties 

Notes

Acknowledgements

This study was made possible thanks to the financial support of the Canadian International Development Agency (CIDA) and the International Development Research Centre (IDRC); and through the collaboration of researchers from the University of Parakou (Benin), Institut de l’Economie Rurale (Mali), Institut National de Recherche Agronomique (Niger), the University of Saskatchewan (Canada) and the International Center for Tropical Agriculture (Kenya). May they find in this work the reward for their efforts.

References

  1. Aune, J. B., Doumbia, M., & Berthé, A. (2007). Microfertilizing sorghum and pearl millet in Mali Agronomic; economic and social feasibility. Agriculture, 36, 199–203.Google Scholar
  2. Bado, B. V. (2002). Rôle des légumineuses sur la fertilité des sols ferrugineux tropicaux des zones guinéenne et soudanienne du Burkina Faso. Thèse de Doctorat; Université Laval Québec 184 pGoogle Scholar
  3. Bagayoko, M., Maman, N., Palé, S., Siriti, S., Taonda, S. J. B., Traoré, S., & Mason, S. C. (2011). Microdose and N and P Fertilizer application rates for pearl millet in West Africa. African Journal of Agricultural Research, 6(5), 1141–1150.Google Scholar
  4. Botoni, E., & Reij, C. (2009) La transformation silencieuse de l’environnement et des systèmes de production au Sahel : Impacts des investissements publics et privés dans la gestion des ressources naturelles. CILSS; Burkina Faso; 61 pGoogle Scholar
  5. Buerkert, A., Bationo, A., & Piepho, H.-P. (2001). Efficient phosphorus application strategies for increased crop production in Sub-Saharan West Africa. Field Crops Research, 72, 1–15.CrossRefGoogle Scholar
  6. Cooper, P. J. M., Dimes, J., Rao, K. P. C., Shapiro, B., Shiferaw, B., & Twomlow, S. (2008). Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agriculture; Ecosystems and Environment, 126, 24–35.CrossRefGoogle Scholar
  7. C.P.C.S. (1967). Classification des sols. Commission de pédologie et de classification des sols. ENSA-Grignon; Laboratoire de pédologie-géologie; 87 p. multigr.Google Scholar
  8. Elshout, S. V. D., Sandwidi, B., Ouédraogo, E., Kaboré, R., & Tapsoba, G. (2001) What are the prospects for intensifying soil fertility management in the Sahel. A case study from Sanmatenga; Burkina Faso. Managing Africa’s Soils N°22; 30 pGoogle Scholar
  9. FAO. (2006). World Reference Base for soil resources 2006. A framework for international classification; correlation and communication. Ed. FAO; World Soil Resources Reports N°103; Rome; 128 p.Google Scholar
  10. FAO. (2009). Agriculture Organization of the United Nations; FAOSTAT (2011) www.fao.org
  11. Ganou, I. (2005). Monographie du Zondoma; Ministère de l’Agriculure (85 p). Burkina: Faso.Google Scholar
  12. Lahmar, R., Bationo, B. A., Lamso, N. D., Guéro, Y., & Tittonell, P. (2012). Tailoring coservation agriculture technologies to West Africa semi-arid zone: Building on traditional local practices for soil restoration. Field Crops Research, 132(2012), 158–167.CrossRefGoogle Scholar
  13. Lal, R. (2000). Soil Management in the Developing Countries. Soil Science, 165, 57–72.CrossRefGoogle Scholar
  14. LECO© Corporation. (1987). Leco Corporation; 3000 Lakeview; Avenue Saint Joseph; MI 49085Google Scholar
  15. Lompo, F. (2009). Effets induits des modes de gestion de la fertilité sur les états du phosphore et la solubilisation des phosphates naturels dans deux sols acides du Burkina Faso. Thèse de doctorat. Université de Cocody. 200 pGoogle Scholar
  16. Masse, D. (2007). Changements d’usage des terres dans les agro-systèmes d’Afrique Sub-saharienne. Propriétés des sols et dynamique des matières organiques. Mémoire d’habilitation à diriger des recherches. Institut National Polytechnique de Toulouse. Ecole Nationale Supérieure Agronomique de Toulouse. 82 pGoogle Scholar
  17. MED. (2006). Atlas du Burkina Faso. Ministère de l‘Economie et du Développement; Ouagadougou; 215 p.Google Scholar
  18. Morris, M., Kelly, V. A., Kopicki, R. J., & Byerlee, D. (2007). Fertilizer Use in African Agriculture. Lessons learned and good practice guidelines. 162 p.Google Scholar
  19. Mehlich, A. (1984). Mehlich-3 soil test extractant: A modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal., 15(12), 1409–1416.CrossRefGoogle Scholar
  20. Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis, Part 2. ASA 9, 2nd editionGoogle Scholar
  21. Otalvaro, I. F., Neto, M. P. C., Delage, P., & Caicedo, B. (2016). Relationship between soil structure and water retention properties in a residual compacted soil. Engineering Geology, 205, 73–80.CrossRefGoogle Scholar
  22. Ouattara, K., Ouattara, B., Assa, A., & Sédogo, P. M. (2006b). Long-term effect of ploughing and organic matter input on soil moisture characteristics of Ferric Lixisol in Burkina Faso. Soil & Tillage Research, 88, 217–224.CrossRefGoogle Scholar
  23. Ouattara, B., Ouattara, K., Serpantié, G., Mando, A., Sedogo, M. P., & Bationo, A. (2006a). Intensity cultivation induced-effects on soil organic carbon dynamic in the Western Cotton area of Burkina Faso. Nutrient Cycling in Agroecosystem., 76, 331–339.CrossRefGoogle Scholar
  24. Ouédraogo, M., Dembelé, Y., & Somé, L. (2010). Perceptions et stratégies d’adaptation aux changements des précipitations: cas des paysans du Burkina Faso. Sécheresse, 21, 87–96.Google Scholar
  25. Palé, S., Mason, S. C., & Taonda, S. J. B. (2009). Water and fertilizer influence on yield of grain sorghum varieties produced in Burkina Faso. S. Afr. J. Plant Soil, 26(2), 91–97.CrossRefGoogle Scholar
  26. Phillips, N. S., Stallebrass, S. E., Goodey, R. J., & Jefferis, S. A. (2015). Mechanisms for the disaggregation of soil cuttings in slurries, 3285–3290Google Scholar
  27. Piéri, C. (1992). Fertility of soils. A Future for Farming in the West African Savannah. Springer; Berlin, 348 pp.Google Scholar
  28. Reij, C., & Thiombiano, T. (2003) Développement rural et environnement au Burkina Faso: La réhabilitation de la capacité productive des terroirs sur la partie nord du Plateau Central entre 1980 et 2001. Direction Générale de l’Environnement; Ouagadougou; Burkina Faso; 82 p.Google Scholar
  29. Sawadogo, H., Bock, L., Lacroix, D., & Zombré, N. P. (2008). Restauration des potentialités des sols dégradés à l’aide du Zaï et du compost dans le Yatenga (Burkina Faso). Biotechnol. Agron. Soc. Environ., 12(3), 279–290.Google Scholar
  30. Sermé, I., Ouattara, K., Logah, V., SJB, T., Quansah, C., Ouattara, B., & Abaidoo, R. (2015). Impact of tillage and fertility management on Lixisol hydraulic characteristics. Int. J. Agri. & Agri. R., 7(2), 80–92.Google Scholar
  31. Sermé, I., Ouattara, K., Ouattara, B., & Taonda, S. J. B. (2016). Short term impact of tillage and fertility management on Lixisol structural degradation Int. J. Agric. Pol. Res. Vol., 4(1), 1–6.Google Scholar
  32. Stoorvogel, J. J., & Smaling, E. M. A. (1990). Assessment of soil nutrient depletion in subsaharian Africa : The Winan Staring Centre; 28. Wagenigen; pp., 83–100.Google Scholar
  33. Thomas, R. L., Sheard, R. W., & Moyer, J. R. (1967). Comparison of conventional and automated procedures for N; P; and K analysis of plant material using a single digestion. Agron J, 59, 240–243.CrossRefGoogle Scholar
  34. Tabo, R., Bationo, A., Diallo Maimouna, K., Hassane, O., & Koala, S. (2006). Fertilizer microdosing for the prosperity of small-scale farmers in the Sahel: Final Report. Global theme on Agroecosysthems Report n°23. PO Box 12404; Niamey; Niger. International Crops Research Institute for the Semi-arid Tropics. 28 PPGoogle Scholar
  35. Tabo, R., Bationo, A., Gerard, B., Ndjeunga, J., Marchal, D., Amadou, B., Annou, G., Sogodogo, D., Taonda, J. B. S., Hassane, O., Maimouna, K., & Koala, S. (2007). Improving cereal productivity and farmers’ income using a strategic application of fertilizers in West Africa. In A. Bationo, B. Waswa, J. Kihara, & J. Kimetu (Eds.), Advances in integrated soil fertility management in Sub-Saharan Africa: Challenges and opportunities (pp. 201–208).CrossRefGoogle Scholar
  36. Traore, A. (2014). Effets de la microdose; des techniques de gestion des eaux et du warrantage sur le revenu des femmes productrices de niébé au Burkina Faso. Mémoire de DEA; Option Economie des Ressources naturelles; Université de Parakou; Bénin; 63 pGoogle Scholar
  37. Twomlow, S., Rohrbach, D., Dimes, J., Rusike, J., Mupangwa, W., Ncube, B., Hove, L., Moyo, M., Mashingaidze, N., & Mahposa, P. (2010). Micro-dosing as a pathway to Africa’s Green Revolution: evidence from broad-scale on-farm trials. Nutr Cycl Agroecosyst, 88, 3–15.CrossRefGoogle Scholar
  38. Yaméogo, J. T., Somé, A. N., Mette Lykke, A., Hien, M., & Nacro, H. B. (2013). Restauration des potentialités de sols dégradés à l’aide du zai et des cordons pierreux à l’Ouest du Burkina Faso. Tropicultura, 31(4), 224–230.Google Scholar
  39. Yang, J., & Wei, L. M. (2012). Collapse of loose sand with the addition of fines: the role of particle shape. Géotechnique, 62(12), 1111–1125.CrossRefGoogle Scholar
  40. Zougmoré, R., Guillobez, S., Kambou, N. F., & Son, G. (2000). Runoff and sorghum performance as affected by the spacing of stone lines in the semi-arid Sahelian zone. Soil and Tillage Research, 56, 175–183.CrossRefGoogle Scholar
  41. Zougmoré, R., Mando, A., Ringersma, J., & Stroosnijder, L. (2003). Effect of combined water and nutrient management on runoff and sorghum yield in semi-arid Burkina Faso. Soil Use and Management, 19, 257–264.CrossRefGoogle Scholar
  42. Zougmoré, R., Ouattara, K., Mando, A., & Ouattara, B. (2004a). Rôle des nutriments dans le succès des techniques de conservation des eaux et des sols (cordons pierreux; bandes enherbées; zaï et demi-lunes) au Burkina Faso. Sécheresse, 15(1), 1–8.Google Scholar
  43. Zougmoré, R., Mando, A., Stroosnijder, L., & Ouédraogo, E. (2004b). Economic benefits of combining soil and water conservation measures with nutrient management in semi-arid Burkina Faso. Nutrient Cycling in Agroecosystems, 70, 261–269.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • B. Ouattara
    • 1
  • B. B. Somda
    • 4
  • I. Sermé
    • 1
  • A. Traoré
    • 1
  • D. Peak
    • 2
  • F. Lompo
    • 1
  • S. J. B. Taonda
    • 1
  • Michel P. Sedogo
    • 1
  • Andre Bationo
    • 3
  1. 1.Institut de l’Environnement et de Recherches Agricoles (INERA)OuagadougouBurkina Faso
  2. 2.University of Saskatchewan (UofS)SaskatoonCanada
  3. 3.International Fertilizer Development Center (IFDC)AccraGhana
  4. 4.Institut de l’Environnement et de Recherches Agricoles (INERA)Fada N’GourmaBurkina Faso

Personalised recommendations