Energy Stable Model Order Reduction for the Allen-Cahn Equation

  • Murat Uzunca
  • Bülent Karasözen
Part of the MS&A book series (MS&A, volume 17)


The Allen-Cahn equation is a gradient system, where the free-energy functional decreases monotonically in time. We develop an energy stable reduced order model (ROM) for a gradient system, which inherits the energy decreasing property of the full order model (FOM). For the space discretization we apply a discontinuous Galerkin (dG) method and for time discretization the energy stable average vector field (AVF) method. We construct ROMs with proper orthogonal decomposition (POD)-greedy adaptive sampling of the snapshots in time and evaluating the nonlinear function with greedy discrete empirical interpolation method (DEIM). The computational efficiency and accuracy of the reduced solutions are demonstrated numerically for the parametrized Allen-Cahn equation with Neumann and periodic boundary conditions.



The authors would like to thank the reviewer for the comments and suggestions that helped to improve the manuscript.


  1. 1.
    Ali, M., Urban, K.: Reduced basis exact error estimates with wavelets. In: Karasözen, B., Manguğlu, M., Tezer-Sezgin, M., Göktepe, S., Uğur, Ö. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2015, Lecture Notes in Computational Science and Engineering, vol. 112, pp. 359–367. Springer International Publishing, Switzerland (2016)CrossRefGoogle Scholar
  2. 2.
    Allen, M.S., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)CrossRefGoogle Scholar
  3. 3.
    Antil, H., Heinkenschloss, M., Sorensen, D.C.: Application of the discrete empirical interpolation method to reduced order modeling of nonlinear and parametric systems. In: Quarteroni, A., Rozza, G. (eds.) Reduced Order Methods for Modeling and Computational Reduction, MS and A. Model. Simul. Appl., vol. 9, pp. 101–136. Springer Italia, Milan (2014)Google Scholar
  4. 4.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 724–760 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Arnold, D., Brezzi, F., Cockborn, B., Marini, L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 339(9), 667–672 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barrett, J.W., Blowey, J.F.: Finite element approximation of the Cahn–Hilliard equation with concentration dependent mobility. Math. Comput. 68(226), 487–517 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Celledoni, E., Grimm, V., McLachlan, R., McLaren, D., O’Neale, D., Owren, B., Quispel, G.: Preserving energy resp. dissipation in numerical {PDEs} using the “average vector field” method. J. Comput. Phys. 231(20), 6770–6789 (2012)Google Scholar
  10. 10.
    Chaturantabut, S., Sorensen, D.C.: A state space error estimate for POD–DEIM nonlinear model reduction. SIAM J. Numer. Anal. 50(1), 46–63 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Choi, J.W., Lee, H.G., Jeong, D., Kim, J.: An unconditionally gradient stable numerical method for solving the Allen–Cahn equation. Phys. A Stat. Mech. Appl. 388(9), 1791–1803 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Christlieb, A., Jones, J., Promislow, K., Wetton, B., Willoughby, M.: High accuracy solutions to energy gradient flows from material science models. J. Comput. Phys. 257, 193–215 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2(1), 197–205 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Feng, X., Wu, H.j.: A posteriori error estimates and an adaptive finite element method for the Allen–Cahn equation and the mean curvature flow. J. Sci. Comput. 24(2), 121–146 (2005)Google Scholar
  17. 17.
    Feng, X., Song, H., Tang, T., Yang, J.: Nonlinear stability of the implicit–explicit methods for the Allen–Cahn equation. Inverse Problems Imaging 7(3), 679–695 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Feng, X., Tang, T., Yang, J.: Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models. East Asian J. Appl. Math. 3, 59–80 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Grepl, M.A.: Model order reduction of parametrized nonlinear reaction-diffusion systems. Comput. Chem. Eng. 43, 33–44 (2012)CrossRefGoogle Scholar
  20. 20.
    Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: M2AN 41(3), 575–605 (2007)Google Scholar
  21. 21.
    Guo, R., Ji, L., Xu, Y.: High order local discontinuous Galerkin methods for the Allen–Cahn equation: analysis and simulation. J. Comput. Math. 34, 135–158 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hairer, E.: Energy-preserving variant of collocation methods. J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Ionita, A.C., Antoulas, A.C.: Data-driven parametrized model reduction in the loewner framework. SIAM J. Sci. Comput. 36(3), A984–A1007 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kalashnikova, I., Barone, M.F.: Efficient non-linear proper orthogonal decomposition/Galerkin reduced order models with stable penalty enforcement of boundary conditions. Int. J. Numer. Methods Eng. 90(11), 1337–1362 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Karasözen, B., Kücükseyhan, T., Uzunca, M.: Structure preserving integration and model order reduction of skew-gradient reaction-diffusion systems. Ann. Oper. Res. 1–28 (2015)Google Scholar
  26. 26.
    Liu, F., Shen, J.: Stabilized semi-implicit spectral deferred correction methods for Allen–Cahn and Cahn–Hilliard equations. Math. Methods Appl. Sci. 38(18), 4564–4575 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rivière, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations, Theory and implementation. SIAM (2008)CrossRefzbMATHGoogle Scholar
  28. 28.
    Shen, J., Yang, X.: An efficient moving mesh spectral method for the phase-field model of two-phase flows. J. Comput. Phys. 228(8), 2978–2992 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discret. Contin. Dyn. Syst. A 28, 1669–1691 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. Math. Sci. 14, 1517–1534 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Song, H., Jiang, L., Li, Q.: A reduced order method for Allen–Cahn equations. J. Comput. Appl. Math. 292, 213–229 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ullmann, S., Rotkvic, M., Lang, J.: POD-Galerkin reduced-order modeling with adaptive finite element snapshots. J. Comput. Phys. 235, 244–258 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Vemaganti, K.: Discontinuous Galerkin methods for periodic boundary value problems. Numerical Methods Partial Differ. Equ. 23(3), 587–596 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Volkwein, S.: Optimal control of a phase-field model using proper orthogonal decomposition. ZAMM - J. Appl. Math. Mech. / Zeitschrift für Angewandte Mathematik und Mechanik 81(2), 83–97 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wirtz, D., Sorensen, D.C., Haasdonk, B.: A posteriori error estimation for DEIM reduced nonlinear dynamical systems. SIAM J. Sci. Comput. 36(2), A311–A338 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Yano, Masayuki: A minimum-residual mixed reduced basis method: exact residual certification and simultaneous finite-element reduced-basis refinement. ESAIM: M2AN 50(1), 163–185 (2016)Google Scholar
  37. 37.
    Zhang, J., Du, Q.: Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit. SIAM J. Sci. Comput. 31(4), 3042–3063 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of Turkish Aeronautical AssociationAnkaraTurkey
  2. 2.Institute of Applied Mathematics and Department of MathematicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations