Advertisement

Localized Reduced Basis Approximation of a Nonlinear Finite Volume Battery Model with Resolved Electrode Geometry

  • Mario Ohlberger
  • Stephan Rave
Chapter
Part of the MS&A book series (MS&A, volume 17)

Abstract

In this contribution we present first results towards localized model order reduction for spatially resolved, three-dimensional lithium-ion battery models. We introduce a localized reduced basis scheme based on non-conforming local approximation spaces stemming from a finite volume discretization of the analytical model and localized empirical operator interpolation for the approximation of the model’s nonlinearities. Numerical examples are provided indicating the feasibility of our approach.

Notes

Acknowledgements

This work has been supported by the German Federal Ministry of Education and Research (BMBF) under contract number 05M13PMA.

References

  1. 1.
    Albrecht, F., Haasdonk, B., Ohlberger, M., Kaulmann, S.: The localized reduced basis multiscale method. In: Proceedings of Algoritmy 2012, Conference on Scientific Computing, Vysoke Tatry, Podbanske, September 9–14, 2012. pp. 393–403 (2012)Google Scholar
  2. 2.
    Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339(9), 667–672 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. II. Implementation and tests in DUNE. Computing 82(2–3), 121–138 (2008)MathSciNetMATHGoogle Scholar
  4. 4.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. I. Abstract framework. Computing 82(2–3), 103–119 (2008)MathSciNetMATHGoogle Scholar
  5. 5.
    Buhr, A., Engwer, C., Ohlberger, M., Rave, S.: ArbiLoMod: local solution spaces by random training in electrodynamics. In: Benner, P., et al. (eds.) Model Reduction of Parametrized Systems. MS&A, vol. 17. Springer International Publishing, Cham (2017)Google Scholar
  6. 6.
    Buhr, A., Engwer, C., Ohlberger, M., Rave, S.: ArbiLoMod, a simulation technique designed for arbitrary local modifications. SIAM J. Sci. Comput. (2017). Accepted for publication. arXiv e-prints (1512.07840). http://arxiv.org/abs/1512.07840
  7. 7.
    Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Haasdonk, B., Ohlberger, M., Rozza, G.: A reduced basis method for evolution schemes with parameter-dependent explicit operators. Electron. Trans. Numer. Anal. 32, 145–161 (2008)MathSciNetMATHGoogle Scholar
  9. 9.
    Hein, S., Latz, A.: Influence of local lithium metal deposition in 3d microstructures on local and global behavior of lithium-ion batteries. Electrochim. Acta 201, 354–365 (2016)CrossRefGoogle Scholar
  10. 10.
    Latz, A., Zausch, J.: Thermodynamic consistent transport theory of li-ion batteries. J. Power Sources 196(6), 3296–3302 (2011)CrossRefMATHGoogle Scholar
  11. 11.
    Milk, R., Rave, S., Schindler, F.: pyMOR - generic algorithms and interfaces for model order reduction. SIAM J. Sci. Comput. 38(5), S194–S216 (2016)Google Scholar
  12. 12.
    Ohlberger, M., Rave, S., Schmidt, S., Zhang, S.: A model reduction framework for efficient simulation of li-ion batteries. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds.) Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Springer Proceedings in Mathematics & Statistics, vol. 78, pp. 695–702. Springer, Switzerland (2014)Google Scholar
  13. 13.
    Ohlberger, M., Rave, S., Schindler, F.: True error control for the localized reduced basis method for parabolic problems. In: Benner, P., et al. (eds.) Model Reduction of Parametrized Systems. MS&A, vol. 17. Springer International Publishing, Cham (2017)Google Scholar
  14. 14.
    Ohlberger, M., Schindler, F.: Error control for the localized reduced basis multiscale method with adaptive on-line enrichment. SIAM J. Sci. Comput. 37(6), A2865–A2895 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ohlberger, M., Rave, S., Schindler, F.: Model reduction for multiscale lithium-ion battery simulation. In: Bülent, K., Murat, M., Münevver, T.-S., Serdar, G., Ömür, U. (eds.) Numerical Mathematics and Advanced Applications - ENUMATH 2015, pp. 317–331. Springer International Publishing, Cham (2016). doi: 10.1007/978-3-319-39929-4_31, ISBN:978-3-319-39929-4. http://dx.doi.org/10.1007/978-3-319-39929-4_31
  16. 16.
    Popov, P., Vutov, Y., Margenov, S., Iliev, O.: Finite volume discretization of equations describing nonlinear diffusion in li-ion batteries. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) Numerical Methods and Applications. Lecture Notes in Computer Science, vol. 6046, pp. 338–346. Springer, Berlin/Heidelberg (2011)Google Scholar
  17. 17.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. i-coherent structures. ii-symmetries and transformations. iii-dynamics and scaling. Q. Appl. Math. 45(3), 561–571 (1987)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Applied Mathematics Muenster & Center for Nonlinear ScienceUniversity of MuensterMuensterGermany

Personalised recommendations