True Error Control for the Localized Reduced Basis Method for Parabolic Problems

  • Mario Ohlberger
  • Stephan Rave
  • Felix SchindlerEmail author
Part of the MS&A book series (MS&A, volume 17)


We present an abstract framework for a posteriori error estimation for approximations of scalar parabolic evolution equations, based on elliptic reconstruction techniques (Makridakis and Nochetto, SIAM J. Numer. Anal. 41(4):1585–1594, 2003. doi:10.1137/S0036142902406314; Lakkis and Makridakis, Math. Comput. 75(256):1627–1658, 2006. doi:10.1090/S0025-5718-06-01858-8; Demlow et al., SIAM J. Numer. Anal. 47(3):2157–2176, 2009. doi:10.1137/070708792; Georgoulis et al., SIAM J. Numer. Anal. 49(2):427–458, 2011. doi:10.1137/080722461). In addition to its original application (to derive error estimates on the discretization error), we extend the scope of this framework to derive offline/online decomposable a posteriori estimates on the model reduction error in the context of Reduced Basis (RB) methods. In addition, we present offline/online decomposable a posteriori error estimates on the full approximation error (including discretization as well as model reduction error) in the context of the localized RB method (Ohlberger and Schindler, SIAM J. Sci. Comput. 37(6):A2865–A2895, 2015. doi:10.1137/151003660). Hence, this work generalizes the localized RB method with true error certification to parabolic problems. Numerical experiments are given to demonstrate the applicability of the approach.


  1. 1.
    Albrecht, F., Haasdonk, B., Kaulmann, S., Ohlberger, M.: The localized reduced basis multiscale method. In: Proceedings of Algoritmy 2012, Conference on Scientific Computing, Vysoke Tatry, Podbanske, September 9–14, 2012, pp. 393–403. Slovak University of Technology in Bratislava, Publishing House of STU (2012)Google Scholar
  2. 2.
    Ali, M., Steih, K., Urban, K.: Reduced basis methods with adaptive snapshot computations. Adv. Comput. Math. 43(2), 257–294 (2017). doi:10.1007/s10444-016-9485-9MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Demlow, A., Lakkis, O., Makridakis, C.: A posteriori error estimates in the maximum norm for parabolic problems. SIAM J. Numer. Anal. 47(3), 2157–2176 (2009). doi:10.1137/070708792MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ern, A., Stephansen, A.F., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29(2), 235–256 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Georgoulis, E.H., Lakkis, O., Virtanen, J.M.: A posteriori error control for discontinuous Galerkin methods for parabolic problems. SIAM J. Numer. Anal. 49(2), 427–458 (2011). doi:10.1137/080722461MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. M2AN Math. Model. Numer. Anal. 42(2), 277–302 (2008). doi:10.1051/m2an:2008001Google Scholar
  7. 7.
    Hesthaven, J., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations. SpringerBriefs in Mathematics. Springer, Cham (2016). doi:10.1007/978-3-319-22470-1CrossRefzbMATHGoogle Scholar
  8. 8.
    Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K.A., Ohlberger, M.: The localized reduced basis multiscale method for two-phase flows in porous media. Int. J. Numer. Methods Eng. 102(5), 1018–1040 (2015). doi:10.1002/nme.4773MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lakkis, O., Makridakis, C.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 75(256), 1627–1658 (2006). doi:10.1090/S0025-5718-06-01858-8MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Makridakis, C., Nochetto, R.H.: Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41(4), 1585–1594 (2003). doi:10.1137/S0036142902406314MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Milk, R., Rave, S., Schindler, F.: pyMOR – generic algorithms and interfaces for model order reduction. SIAM J. Sci. Comput. 38(5), S194–S216 (2016). doi:10.1137/15m1026614Google Scholar
  12. 12.
    Ohlberger, M., Rave, S., Schindler, F.: Model reduction for multiscale lithium-ion battery simulation. In: Karasözen, B., Manguoğlu, M., Tezer-Sezgin, M., Göktepe, S., Uğur, Ö. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2015, pp. 317–331. Springer International Publishing, Cham (2016). doi:10.1007/978-3-319-39929-4_31CrossRefGoogle Scholar
  13. 13.
    Ohlberger, M., Schindler, F.: A-posteriori error estimates for the localized reduced basis multi-scale method. In: Fuhrmann, J., Ohlberger, M., Rohde, C., (eds.) Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects. Springer Proceedings in Mathematics & Statistics, vol. 77, pp. 421–429. Springer, Cham (2014). doi:10.1007/978-3-319-05684-5_41Google Scholar
  14. 14.
    Ohlberger, M., Schindler, F.: Error control for the localized reduced basis multiscale method with adaptive on-line enrichment. SIAM J. Sci. Comput. 37(6), A2865–A2895 (2015). doi:10.1137/151003660MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Patera, A.T., Rozza, G.: Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations, version 1.0. Technical Repotr, Copyright MIT 2006–2007, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering (2006)Google Scholar
  16. 16.
    Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations. La Matematica per il 3+2. Springer, Cham (2016). doi:10.1007/978-3-319-15431-2zbMATHGoogle Scholar
  17. 17.
    Verfürth, R.: A posteriori error estimation techniques for finite element methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). doi:10.1093/acprof:oso/9780199679423.001.0001CrossRefzbMATHGoogle Scholar
  18. 18.
    Yano, M.: A minimum-residual mixed reduced basis method: exact residual certification and simultaneous finite-element reduced-basis refinement. ESAIM: Math. Model. Numer. Anal. 50, 163–185 (2015). doi:10.1051/m2an/2015039MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mario Ohlberger
    • 1
  • Stephan Rave
    • 1
  • Felix Schindler
    • 1
    Email author
  1. 1.Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany

Personalised recommendations