Model Reduction of Parametrized Systems pp 149-167 | Cite as
Reduced-Order Semi-Implicit Schemes for Fluid-Structure Interaction Problems
Abstract
POD–Galerkin reduced-order models (ROMs) for fluid-structure interaction problems (incompressible fluid and thin structure) are proposed in this paper. Both the high-fidelity and reduced-order methods are based on a Chorin-Temam operator-splitting approach. Two different reduced-order methods are proposed, which differ on velocity continuity condition, imposed weakly or strongly, respectively. The resulting ROMs are tested and compared on a representative haemodynamics test case characterized by wave propagation, in order to assess the capabilities of the proposed strategies.
Notes
Acknowledgements
We acknowledge the support by European Union Funding for Research and Innovation—Horizon 2020 Program—in the framework of European Research Council Executive Agency: H2020 ERC CoG 2015 AROMA-CFD project 681447 “Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics” and the PRIN project “Mathematical and numerical modelling of the cardiovascular system, and their clinical applications”. We also acknowledge the INDAM-GNCS project “Tecniche di riduzione della complessità computazionale per le scienze applicate” and INDAM-GNCS young researchers project “Numerical methods for model order reduction of PDEs”.
References
- 1.Amsallem, D., Cortial, J., Farhat, C.: Towards real-time computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information. AIAA J. 48(9), 2029–2037 (2010)CrossRefGoogle Scholar
- 2.Astorino, M., Chouly, F., Fernández, M.A.: Robin based semi-implicit coupling in fluid-structure interaction: Stability analysis and numerics. SIAM J. Sci. Comput. 31(6), 4041–4065 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 3.Badia, S., Nobile, F., Vergara, C.: Fluid–structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227(14), 7027–7051 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 4.Badia, S., Quaini, A., Quarteroni, A.: Splitting methods based on algebraic factorization for fluid-structure interaction. SIAM J. Sci. Comput. 30(4), 1778–1805 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 5.Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations. Int. J. Numer. Methods Eng. 102(5), 1136–1161 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 6.Ballarin, F., Rozza, G.: POD–Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems. Int. J. Numer. Methods Fluids 82(12), 1010–1034 (2016)MathSciNetCrossRefGoogle Scholar
- 7.Ballarin, F., Sartori, A., Rozza, G.: RBniCS – reduced order modelling in fenics. http://mathlab.sissa.it/rbnics (2016)
- 8.Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C.R. Math. 339(9), 667–672 (2004)Google Scholar
- 9.Colciago, C.M.: Reduced order fluid-structure interaction models for haemodynamics applications. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, N. 6285 (2014)Google Scholar
- 10.Fernández, M.A.: Incremental displacement-correction schemes for incompressible fluid-structure interaction. Numer. Math. 123(1), 21–65 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 11.Fernández, M.A., Gerbeau, J.F., Grandmont, C.: A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Methods Eng. 69(4), 794–821 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 12.Fernández, M.A., Landajuela, M., Mullaert, J., Vidrascu, M.: Robin-Neumann schemes for incompressible fluid-structure interaction. Domain Decomposition Methods in Science and Engineering, vol. XXII. pp. 65–76. Springer, Cham (2016)Google Scholar
- 13.Fernández, M.A., Mullaert, J., Vidrascu, M.: Explicit Robin–Neumann schemes for the coupling of incompressible fluids with thin-walled structures. Comput. Methods Appl. Mech. Eng. 267, 566–593 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 14.Formaggia, L., Gerbeau, J., Nobile, F., Quarteroni, A.: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6–7), 561–582 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 15.Guermond, J.L., Quartapelle, L.: On stability and convergence of projection methods based on pressure poisson equation. Int. J. Numer. Methods Fluids 26(9), 1039–1053 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 16.Guidoboni, G., Glowinski, R., Cavallini, N., Canic, S.: Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow. J. Comput. Phys. 228(18), 6916–6937 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 17.Hesthaven, J.S., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations. SpringerBriefs in Mathematics. Springer, New York (2015)MATHGoogle Scholar
- 18.Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: A reduced computational and geometrical framework for inverse problems in hemodynamics. Int. J. Numer. Methods Biomed. Eng. 29(7), 741–776 (2013)MathSciNetCrossRefGoogle Scholar
- 19.Lassila, T., Quarteroni, A., Rozza, G.: A reduced basis model with parametric coupling for fluid-structure interaction problems. SIAM J. Sci. Comput. 34(2), A1187–A1213 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 20.Logg, A., Mardal, K.A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)CrossRefMATHGoogle Scholar
- 21.Quarteroni, A., Formaggia, L.: Mathematical modelling and numerical simulation of the cardiovascular system. In: Computational Models for the Human Body. Handbook of Numerical Analysis, vol. 12, pp. 3–127. Elsevier, Amsterdam (2004)Google Scholar
- 22.Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: problems, models and methods. Comput. Vis. Sci. 2(4), 163–197 (2000). doi:10.1007/s007910050039. http://dx.doi.org/10.1007/s007910050039 CrossRefMATHGoogle Scholar
- 23.Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, vol. 23. Springer, Berlin (2008)MATHGoogle Scholar
- 24.Rozza, G.: Reduced basis methods for Stokes equations in domains with non-affine parameter dependence. Comput. Vis. Sci. 12(1), 23–35 (2009)MathSciNetCrossRefGoogle Scholar
- 25.Rozza, G., Huynh, D.B.P., Manzoni, A.: Reduced basis approximation and a posteriori error estimation for stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numer. Math. 125(1), 115–152 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 26.Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Meth. Eng. 15, 1–47 (2007)CrossRefMATHGoogle Scholar
- 27.Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196(7), 1244–1260 (2007)MathSciNetCrossRefMATHGoogle Scholar