Advertisement

Transport Based Image Morphing with Intensity Modulation

  • Jan Maas
  • Martin Rumpf
  • Stefan Simon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)

Abstract

We present a generalized optimal transport model in which the mass-preserving constraint for the \(L^2\)-Wasserstein distance is relaxed by introducing a source term in the continuity equation. The source term is also incorporated in the path energy by means of its squared \(L^2\)-norm in time of a functional with linear growth in space. This extension of the original transport model enables local density modulations, which is a desirable feature in applications such as image warping and blending. A key advantage of the use of a functional with linear growth in space is that it allows for singular sources and sinks, which can be supported on points or lines. On a technical level, the \(L^2\)-norm in time ensures a disintegration of the source in time, which we use to obtain the well-posedness of the model and the existence of geodesic paths. The numerical discretization is based on the proximal splitting approach [18] and selected numerical test cases show the potential of the proposed approach. Furthermore, the approach is applied to the warping and blending of textures.

Keywords

Optimal transport Texture morphing Generalized Wasserstein distance Proximal splitting 

Supplementary material

427343_1_En_45_MOESM1_ESM.pdf (177 kb)
Supplementary material 1 (pdf 176 KB)

Supplementary material 2 (mp4 8301 KB)

References

  1. 1.
    Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Burger, M., Franek, M., Schönlieb, C.-B.: Regularized regression and density estimation based on optimal transport. Appl. Math. Res. eXpress 2012(2), 209–253 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Buttazzo, G., Santambrogio, F.: A model for the optimal planning of an urban area. SIAM J. Math. Anal. 37(2), 514–530 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Carlier, G., Duval, V., Peyré, G., Schmitzer, B.: Convergence of entropic schemes for optimal transport, gradient flows. arXiv preprint arXiv:1512.02783 (2015)
  5. 5.
    Caffarelli, L.A., McCann, R.J.: Free boundaries in optimal transport and monge-ampere obstacle problems. Ann. Math. 171, 673–730 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. SOA, vol. 49, pp. 185–212. Springer, Heidelberg (2011). doi: 10.1007/978-1-4419-9569-8_10 CrossRefGoogle Scholar
  7. 7.
    Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.-X.: Unbalanced optimal transport: geometry and kantorovich formulation. arXiv preprint arXiv:1508.05216 (2015)
  8. 8.
    Chizat, L., Schmitzer, B., Peyré, G., Vialard, F.-X.: An interpolating distance between optimal transport, Fischer-Rao. arXiv preprint arXiv:1506.06430 (2015)
  9. 9.
    Dolbeault, J., Nazaret, B., Savaré, G.: A new class of transport distances between measures. Calc. Var. Partial Differ. Equ. 34(2), 193–231 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eckstein, J., Bertsekas, D.P.: On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Esser, E.: Applications of lagrangian-based alternating direction methods and connections to split Bregman. CAM Rep. 9, 31 (2009)Google Scholar
  12. 12.
    Figalli, A.: The optimal partial transport problem. Arch. Ration. Mech. Anal. 195(2), 533–560 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kondratyev, S., Monsaingeon, L., Vorotnikov, D.: A new optimal transport distance on the space of finite radon measures. arXiv preprint arXiv:1505.07746 (2015)
  14. 14.
    Liero, M., Mielke, A., Savaré, G.: Optimal transport in competition with reaction: the Hellinger-Kantorovich distance and geodesic curves. Preprint no. 2160, WIAS (2015)Google Scholar
  15. 15.
    Maas, J., Rumpf, M., Schönlieb, C., Simon, S.: A generalized model for optimal transport of images including dissipation and density modulation. ESAIM Math. Model. Numer. Anal. 49(6), 1745–1769 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Peyré, G.: Entropic Wasserstein gradient flows. arXiv preprint arXiv:1502.06216 (2015)
  17. 17.
    Peyré, G., Fadili, J., Rabin, J.: Wasserstein active contours. In: Proceedings of IEEE International Conference on Image Processing, pp. 2541–2544 (2012)Google Scholar
  18. 18.
    Papadakis, N., Peyré, G., Oudet, E.: Optimal transport with proximal splitting. SIAM J. Imaging Sci. 7(1), 212–238 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Piccoli, B., Rossi, F.: On properties of the generalized Wasserstein distance. arXiv preprint arXiv:1304.7014 (2013)
  20. 20.
    Piccoli, B., Rossi, F.: Generalized Wasserstein distance and its application to transport equations with source. Arch. Ration. Mech. Anal. 211, 335–358 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Schmitzer, B.: A sparse multi-scale algorithm for dense optimal transport. arXiv preprint arXiv:1510.05466 (2015)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Science and Technology AustriaKlosterneuburgAustria
  2. 2.Institute for Numerical SimulationUniversität BonnBonnGermany

Personalised recommendations