Advertisement

Time Discrete Extrapolation in a Riemannian Space of Images

  • Alexander Effland
  • Martin Rumpf
  • Florian Schäfer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)

Abstract

The Riemannian metamorphosis model introduced and analyzed in [7, 12] is taken into account to develop an image extrapolation tool in the space of images. To this end, the variational time discretization for the geodesic interpolation proposed in [2] is picked up to define a discrete exponential map. For a given weakly differentiable initial image and a sufficiently small initial image variation it is shown how to compute a discrete geodesic extrapolation path in the space of images. The resulting discrete paths are indeed local minimizers of the corresponding discrete path energy. A spatial Galerkin discretization with cubic splines on coarse meshes for image deformations and piecewise bilinear finite elements on fine meshes for image intensity functions is used to derive a fully practical algorithm. The method is applied to real images and image variations recorded with a digital camera.

Keywords

Image extrapolation Shape space Elastic registration Exponential map 

References

  1. 1.
    Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)CrossRefGoogle Scholar
  2. 2.
    Berkels, B., Effland, A., Rumpf, M.: Time discrete geodesic paths in the space of images. SIAM J. Imaging Sci. 8(3), 1457–1488 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56, 587–600 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Holm, D., Trouvé, A., Younes, L.: The Euler-Poincaré theory of metamorphosis. Q. Appl. Math. 67, 661–685 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Klingenberg, W.P.A.: Riemannian Geometry. de Gruyter Studies in Mathematics, vol. 1, 2nd edn. Walter de Gruyter & Co., Berlin (1995)CrossRefzbMATHGoogle Scholar
  6. 6.
    Lorenzi, M., Pennec, X.: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration. Int. J. Comput. Vis. 105(2), 111–127 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: a general framework. Int. J. Comput. Vis. 41(1–2), 61–84 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  9. 9.
    Rumpf, M., Wirth, B.: Variational time discretization of geodesic calculus. IMA J. Numer. Anal. 35(3), 1011–1046 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vis. 28(3), 213–221 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Trouvé, A., Younes, L.: Metamorphoses through Lie group action. Found. Comput. Math. 5(2), 173–198 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Vialard, F.-X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97, 229–241 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Vialard, F.-X., Risser, L., Rueckert, D., Holm, D.D.: Diffeomorphic atlas estimation using geodesic shooting on volumetric images. Ann. BMVA 2012, 1–12 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexander Effland
    • 1
  • Martin Rumpf
    • 1
  • Florian Schäfer
    • 2
  1. 1.Institute for Numerical SimulationUniversität BonnBonnGermany
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations