Infimal Convolution Coupling of First and Second Order Differences on Manifold-Valued Images

  • Ronny Bergmann
  • Jan Henrik Fitschen
  • Johannes Persch
  • Gabriele Steidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)

Abstract

Recently infimal convolution type functions were used in regularization terms of variational models for restoring and decomposing images. This is the first attempt to generalize the infimal convolution of first and second order differences to manifold-valued images. We propose both an extrinsic and an intrinsic approach. Our focus is on the second one since the summands arising in the infimal convolution lie on the manifold themselves and not in the higher dimensional embedding space. We demonstrate by numerical examples that the approach works well on the circle, the 2-sphere, the rotation group, and the manifold of positive definite matrices with the affine invariant metric.

Keywords

Infimal convolution TGV Higher order differences Restoration of manifold-valued images Decomposition of manifold-valued images 

References

  1. 1.
    Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)MATHGoogle Scholar
  2. 2.
    Adams, B.L., Wright, S.I., Kunze, K.: Orientation imaging: the emergence of a new microscopy. J. Metall. Mater. Trans. A 24, 819–831 (1993)CrossRefGoogle Scholar
  3. 3.
    Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition – modelling, algorithms and parameter selection. Int. J. Comput. Vision 67(1), 111–136 (2006)CrossRefMATHGoogle Scholar
  5. 5.
    Azagra, R.D., Ferrera, C.J.: Inf-convolution and regularization of convex functions on Riemannian manifolds of nonpositive curvature. Revista matemática Complutense 19(2), 323–345 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bačák, M., Bergmann, R., Steidl, G., Weinmann, A.: A second order non-smooth variational model for restoring manifold-valued images. SIAM J. Sci. Comput. 38(1), A567–A597 (2016)CrossRefMATHGoogle Scholar
  7. 7.
    Bachmann, F., Hielscher, R.: MTEX - MATLAB toolbox for quantitative texture analysis (2005–2016). http://mtex-toolbox.github.io/
  8. 8.
    Bachmann, F., Hielscher, R., Jupp, P.E., Pantleon, W., Schaeben, H., Wegert, E.: Inferential statistics of electron backscatter diffraction data from within individual crystalline grains. J. Appl. Crystallogr. 43, 1338–1355 (2010)CrossRefGoogle Scholar
  9. 9.
    Balle, F., Eifler, D., Fitschen, J.H., Schuff, S., Steidl, G.: Computation and visualization of local deformation for multiphase metallic materials by infimal convolution of TV-type functionals. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 385–396. Springer, Cham (2015). doi:10.1007/978-3-319-18461-6_31 Google Scholar
  10. 10.
    Bergmann, R., Chan, R.H., Hielscher, R., Persch, J., Steidl, G.: Restoration of manifold-valued images by half-quadratic minimization. Inverse Prob. Imaging 10(2), 281–304 (2016)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bergmann, R., Weinmann, A.: Inpainting of cyclic data using first and second order differences. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 155–168. Springer, Cham (2015). doi:10.1007/978-3-319-14612-6_12 Google Scholar
  12. 12.
    Bergmann, R., Weinmann, A.: A second order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data. J. Math. Imaging Vis. 55(3), 401–427 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Donoho, D.L., Kutyniok, G.: Geometric separation using a wavelet-shearlet dictionary. In: SampTA 2009 (2009)Google Scholar
  16. 16.
    Giaquinta, M., Mucci, D.: Maps of bounded variation with values into a manifold: total variation and relaxed energy. Pure Appli. Math. Q. 3(2), 513–538 (2007)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Holler, M., Kunisch, K.: On infimal convolution of TV-type functionals and applications to video and image reconstruction. SIAM J. Imaging Sci. 7(4), 2258–2300 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regularization for functions with values in a manifold. In: IEEE ICCV, pp. 2944–2951 (2013)Google Scholar
  19. 19.
    Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63(1), 20–63 (1956)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Papafitsoros, K., Schönlieb, C.B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 2(48), 308–338 (2014)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefMATHGoogle Scholar
  22. 22.
    Rosman, G., Tai, X.-C., Kimmel, R., Bruckstein, A.M.: Augmented-Lagrangian regularization of matrix-valued maps. Methods Appl. Anal. 21(1), 121–138 (2014)MathSciNetMATHGoogle Scholar
  23. 23.
    Rosman, G., Wang, Y., Tai, X.-C., Kimmel, R., Bruckstein, A.M.: Fast regularization of matrix-valued images. In: Bruhn, A., Pock, T., Tai, X.-C. (eds.) Efficient Algorithms for Global Optimization Methods in Computer Vision. LNCS, vol. 8293, pp. 19–43. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54774-4_2 CrossRefGoogle Scholar
  24. 24.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. In: Approximation XII: San Antonio 2007, pp. 360–385 (2008)Google Scholar
  26. 26.
    Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete \(\ell _1\)-type functionals. Commun. Math. Sci. 9(3), 797–827 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Starck, J.-L., Elad, M., Donoho, D.L.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 14(10), 1570–1582 (2005)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Steidl, G., Setzer, S., Popilka, B., Burgeth, B.: Restoration of matrix fields by second order cone programming. Computing 81, 161–178 (2007)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Strekalovskiy, E., Cremers, D.: Total variation for cyclic structures: Convex relaxation and efficient minimization. In: IEEE CVPR , pp. 1905–1911. IEEE (2011)Google Scholar
  30. 30.
    Sun, S., Adams, B., King, W.: Observation of lattice curvature near the interface of a deformed aluminium bicrystal. Philos. Mag. A 80, 9–25 (2000)CrossRefGoogle Scholar
  31. 31.
    Valkonen, T., Bredies, K., Knoll, F.: Total generalized variation in diffusion tensor imaging. SIAM J. Imaging Sci. 6(1), 487–525 (2013)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. ArXiv preprint arXiv:1511.06324 (2015)
  33. 33.
    Weinmann, A., Demaret, L., Storath, M.: Total variation regularization for manifold-valued data. SIAM J. Imaging Sci. 7(4), 2226–2257 (2014)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Whitney, H.: Differentiable manifolds. Ann. Math. 37(3), 645–680 (1936)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ronny Bergmann
    • 1
  • Jan Henrik Fitschen
    • 1
  • Johannes Persch
    • 1
  • Gabriele Steidl
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Fraunhofer ITWMKaiserslauternGermany

Personalised recommendations