Advertisement

A Correlation-Based Dissimilarity Measure for Noisy Patches

  • Paul Riot
  • Andrés Almansa
  • Yann Gousseau
  • Florence Tupin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)

Abstract

In this work, we address the problem of defining a robust patch dissimilarity measure for an image corrupted by an additive white Gaussi an noise. The whiteness of the noise, despite being a common assumption that is realistic for RAW images, is hardly used to its full potential by classical denoising methods. In particular, the \(L^2\)-norm is very widely used to evaluate distances and similarities between images or patches. However, we claim that a better dissimilarity measure can be defined to convey more structural information. We propose to compute the dissimilarity between patches by using the autocorrelation of their difference. In order to illustrate the usefulness of this measure, we perform three experiments. First, this new criterion is used in a similar patch detection task. Then, we use it on the Non Local Means (NLM) denoising method and show that it improves performances by a large margin. Finally, it is applied to the task of no-reference evaluation of denoising results, where it shows interesting visual properties. In all those applications, the autocorrelation improves over the \(L^2\)-norm.

Keywords

Patch Size Noisy Image Dissimilarity Measure Structural Content Image Denoising 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brunet, D., Vrscay, E.R., Wang, Z.: The use of residuals in image denoising. In: Kamel, M., Campilho, A. (eds.) ICIAR 2009. LNCS, vol. 5627, pp. 1–12. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02611-9_1 CrossRefGoogle Scholar
  2. 2.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Buades, A., Coll, B., Morel, J.M.: Non-local means denoising. Image Process. On Line 1, 208–212 (2011)zbMATHGoogle Scholar
  4. 4.
    Cao, F., Guichard, F., Hornung, H.: Measuring texture sharpness of a digital camera. In: IS & T/SPIE Electronic Imaging. International Society for Optics and Photonics (2009)Google Scholar
  5. 5.
    Colom, M., Buades, A., Morel, J.M.: Nonparametric noise estimation method for raw images. JOSA A 31(4), 863–871 (2014)CrossRefGoogle Scholar
  6. 6.
    Deledalle, C.A., Denis, L., Tupin, F.: How to compare noisy patches? patch similarity beyond Gaussian noise. Int. J. Comput. Vision 99(1), 86–102 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dosselmann, R., Yang, X.D.: A comprehensive assessment of the structural similarity index. Signal Image Video Process. 5(1), 81–91 (2011)CrossRefGoogle Scholar
  8. 8.
    Fehrenbach, J., Nikolova, M., Steidl, G., Weiss, P.: Bilevel image denoising using gaussianity tests. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 117–128. Springer, Cham (2015). doi: 10.1007/978-3-319-18461-6_10 Google Scholar
  9. 9.
    Lanza, A., Morigi, S., Sgallari, F.: Variational image restoration with constraints on noise whiteness. J. Math. Imaging Vision 53(1), 1–17 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Lanza, A., Morigi, S., Sgallari, F., Yezzi, A.J.: Variational image denoising based on autocorrelation whiteness. SIAM J. Imaging Sci. 6(4), 1931–1955 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lanza, A., Morigi, S., Sgallari, F., Yezzi, A.J.: Variational image denoising while constraining the distribution of the residual. Electron. Trans. Num. Anal. 42, 64–84 (2014)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lebrun, M., Buades, A., Morel, J.: A nonlocal bayesian image denoising algorithm. SIAM J. Imaging Sci. 6(3), 1665–1688 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Riot, P., Almansa, A., Gousseau, Y., Tupin, F.: Penalizing local correlations in the residual improves image denoising performance. In: 2016 24th European Signal Processing Conference (EUSIPCO), pp. 1867–1871. IEEE (2016)Google Scholar
  14. 14.
    Sabater, N., Almansa, A., Morel, J.M.: Meaningful Matches in Stereovision. IEEE Trans. PAMI 34(5), 930–942 (2011). http://hal.archives-ouvertes.fr/hal-00647995 CrossRefGoogle Scholar
  15. 15.
    Tasdizen, T.: Principal neighborhood dictionaries for nonlocal means image denoising. IEEE Trans. Image Process. 18(12), 2649–2660 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Teuber, T., Remmele, S., Hesser, J., Steidl, G.: Denoising by second order statistics. Sig. Process. 92(12), 2837–2847 (2012)CrossRefGoogle Scholar
  17. 17.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Paul Riot
    • 1
  • Andrés Almansa
    • 2
  • Yann Gousseau
    • 1
  • Florence Tupin
    • 1
  1. 1.LTCI, Télécom ParisTech, Université Paris-SaclayParisFrance
  2. 2.MAP5, CNRS, Université Paris DescartesParisFrance

Personalised recommendations