Assessing Personality Differences in Human-Technology Interaction: An Overview of Key Self-report Scales to Predict Successful Interaction

  • Christiane Attig
  • Daniel Wessel
  • Thomas Franke
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 713)


For a comprehensive understanding of user diversity, a reliable and valid assessment of stable user characteristics is essential. In the field of human-technology interaction, a plethora of personality-related constructs linked to the experience of and interaction with technical systems has been discussed. A key question for researchers in the field is thus: Which are the key personality concepts and scales for characterizing inter-individual differences in user technology interaction? Based on a literature review and citation analysis, a structured overview of frequently used technology-related personality constructs and corresponding self-report scales is provided. Changes in the popularity and content of scales and concepts that occured over time as well as overlap between constructs and scales are discussed to facilitate scale selection.


Human-technology interaction Human-computer interaction Personality assessment 


  1. 1.
    Abu-Shanab, E., Pearson, J.M., Setterstrom, A.J.: Internet banking and customers’ acceptance in Jordan: the unified model’s perspective. Commun. Assoc. Inform. Syst. 26, 493–524 (2010)Google Scholar
  2. 2.
    Argawal, R., Prasad, J.: A conceptual and operational definition of personal innovativeness in the domain of information technology. Inform. Syst. Res. 9, 204–215 (1998). doi: 10.1287/isre.9.2.204 CrossRefGoogle Scholar
  3. 3.
    Ashton, M.C.: Individual Differences and Personality. Elsevier, Amsterdam (2013)Google Scholar
  4. 4.
    Aykin, N.M., Aykin, T.: Individual differences in human-computer interaction: a survey. Comput. Ind. Eng. 20, 373–379 (1991). doi: 10.1016/0360-8352(91)90009-U CrossRefGoogle Scholar
  5. 5.
    Bandura, A.: Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 84, 191–215 (1977). doi: 10.1037/0033-295X.84.2.191 CrossRefGoogle Scholar
  6. 6.
    Barbeite, F.G., Weiss, E.M.: Computer self-efficacy and anxiety scales for an internet sample: testing measurement equivalence of existing measures and development of new scales. Comput. Hum. Behav. 20, 1–15 (2004). doi: 10.1016/S0747-5632(03)00049-9 CrossRefGoogle Scholar
  7. 7.
    Barnett, T., Pearson, A.W., Pearson, R., Kellermanns, F.W.: Five-factor model personality traits as predictors of perceived and actual usage of technology. Eur. J. Inform. Syst. 24, 374–390 (2015). doi: 10.1057/ejis.2014.10 CrossRefGoogle Scholar
  8. 8.
    Beier, G.: Kontrollüberzeugungen im Umgang mit Technik [Control beliefs in dealing with technology]. Rep. Psychol. 9, 684–693 (1999)Google Scholar
  9. 9.
    Cacioppo, J.T., Petty, R.E.: The need for cognition. J. Pers. Soc. Psychol. 42, 116–131 (1982). doi: 10.1037/0022-3514.42.1.116 CrossRefGoogle Scholar
  10. 10.
    Campbell, N.J., Dobson, J.E.: An inventory of student computer anxiety. Elem. Sch. Guidance Couns. 22, 149–156 (1987)Google Scholar
  11. 11.
    Carducci, B.J.: The Psychology of Personality. Wiley Blackwell, Chichester (2009)Google Scholar
  12. 12.
    Charlton, J.P., Birkett, P.E.: The development and validation of the computer apathy and anxiety scale. J. Educ. Comput. Res. 13, 41–59 (1995). doi: 10.2190/5UPE-80NP-W9WN-BE6W CrossRefGoogle Scholar
  13. 13.
    Chua, S.L., Chen, D., Wong, A.F.L.: Computer anxiety and its correlates: a meta-analysis. Comput. Hum. Behav. 15, 609–623 (1999). doi: 10.1016/S0747-5632(99)00039-4 CrossRefGoogle Scholar
  14. 14.
    Cohen, B.A., Waugh, G.W.: Assessing computer anxiety. Psychol. Rep. 65, 735–738 (1989). doi: 10.2466/pr0.1989.65.3.735 CrossRefGoogle Scholar
  15. 15.
    Compeau, D.R., Higgings, C.A.: Computer self-efficacy: development of a measure and initial test. MIS Q. 19, 189–211 (1995). doi: 10.2307/249688 CrossRefGoogle Scholar
  16. 16.
    Costa, P.T., McCrae, R.R.: Revised NEO Personality Inventory (NEO PI-R) and NEO Five-Factor Inventory (NEO-FFI): Professional Manual. Psychological Assessment Resources, Odessa (1992)Google Scholar
  17. 17.
    Dambrot, F.H., Watkins-Malek, M.A., Silling, S.M., Marshall, R.S., Garver, J.A.: Correlates of sex differences in attitudes toward and involvement with computers. J. Vocat. Behav. 27, 71–86 (1985). doi: 10.1016/0001-8791(85)90053-3 CrossRefGoogle Scholar
  18. 18.
    Dillon, A., Watson, C.: User analysis in HCI – the historical lessons from individual differences research. Int. J. Hum.-Comput. Stud. 45, 619–637 (1996). doi: 10.1006/ijhc.1996.0071 CrossRefGoogle Scholar
  19. 19.
    Francis, L.J.: Measuring attitude toward computers among undergraduate college students: the affective domain. Comput. Educ. 20, 251–255 (1993). doi: 10.1016/0360-1315(93)90024-D CrossRefGoogle Scholar
  20. 20.
    Franke, T., Rauh, N., Krems, J.F.: Individual differences in BEV drivers’ range stress during first encounter of a critical range situation. Appl. Ergon. 57, 28–35 (2016). doi: 10.1016/j.apergo.2015.09.010 CrossRefGoogle Scholar
  21. 21.
    Garland, K.J., Noyes, J.M.: Computer attitude scales: how relevant today? Comput. Hum. Behav. 24, 563–575 (2008). doi: 10.1016/j.chb.2007.02.005 CrossRefGoogle Scholar
  22. 22.
    Heinssen, R.K., Glass, C.R., Knight, L.A.: Assessing computer anxiety: development and validation of the computer anxiety rating scale. Comput. Hum. Behav. 3, 49–59 (1987). doi: 10.1016/0747-5632(87)90010-0 CrossRefGoogle Scholar
  23. 23.
    Igbaria, M., Iivari, J.: The effects of self-efficacy on computer usage. Omega-Int. J. Manag. Sci. 23, 587–605 (1995). doi: 10.1016/0305-0483(95)00035-6 CrossRefGoogle Scholar
  24. 24.
    Joyce, M., Kirakowski, J.: Measuring attitudes towards the internet: the general internet attitude scale. Int. J. Hum.-Comput. Inter. 31, 506–517 (2015). doi: 10.1080/10447318.2015.1064657 CrossRefGoogle Scholar
  25. 25.
    Karrer, K., Glaser, C., Clemens, C., Bruder, C.: Technikaffinität erfassen – der Fragebogen TA-EG [Measuring affinity to technology – the questionnaire TA-EG]. In: Lichtenstein, A., Stößel, C., Clemens, C. (eds.) Der Mensch im Mittelpunkt technischer Systeme. 8. Berliner Werkstatt Mensch-Maschine-Systeme 7. bis 9. Oktober 2009 VDI, Düsseldorf, pp. 196–201 (2009)Google Scholar
  26. 26.
    Kay, R.H.: An exploration of theoretical and practical foundations for assessing attitudes toward computers: the computer attitude measure (CAM). Comput. Hum. Behav. 9, 371–386 (1993). doi: 10.1016/0747-5632(93)90029-R CrossRefGoogle Scholar
  27. 27.
    Kim, Y., Glassman, M.: Beyond search and communication: development and validation of the Internet Self-efficacy Scale (ISS). Comput. Hum. Behav. 29, 1421–1429 (2013). doi: 10.1016/j.chb.2013.01.018 CrossRefGoogle Scholar
  28. 28.
    Kuurstra, J.: Individual differences in human-computer interaction: a review of empirical studies. Master’s thesis, University of Twente (2015)Google Scholar
  29. 29.
    LaLomia, M.J., Sidowski, J.B.: Measurements of computer attitudes: a review. Int. J. Hum.-Comput. Inter. 3, 171–197 (1991). doi: 10.1080/10447319109526003 CrossRefGoogle Scholar
  30. 30.
    LaLomia, M.J., Sidowski, J.B.: Measurements of computer anxiety: a review. Int. J. Hum.-Comput. Inter. 5, 239–266 (1993). doi: 10.1080/10447319309526067 CrossRefGoogle Scholar
  31. 31.
    Loyd, B.H., Gressard, C.: Reliability and factorial validity of computer attitude scales. Educ. Psychol. Measur. 44, 501–505 (1984). doi: 10.1177/0013164484442033 CrossRefGoogle Scholar
  32. 32.
    Marcoulides, G.A.: Measuring computer anxiety: the computer anxiety scale. Educ. Psychol. Measur. 49, 733–739 (1989). doi: 10.1177/001316448904900328 CrossRefGoogle Scholar
  33. 33.
    McCrae, R.R., John, O.P.: An introduction to the five-factor model and its applications. J. Pers. 60, 175–215 (1992). doi: 10.1111/j.1467-6494.1992.tb00970.x CrossRefGoogle Scholar
  34. 34.
    Murphy, C.A., Coover, D., Owen, S.V.: Development and validation of the computer self-efficacy scale. Educ. Psychol. Measur. 49, 893–899 (1989). doi: 10.1177/001316448904900412 CrossRefGoogle Scholar
  35. 35.
    Neyer, F.J., Felber, J., Gebhardt, C.: Entwicklung und Validierung einer Kurzskala zur Erfassung von Technikbereitschaft [Development and validation of a brief measure of technology commitment]. Diagnostica 58, 87–99 (2012). doi: 10.1026/0012-1924/a000067 CrossRefGoogle Scholar
  36. 36.
    Nickell, G.S., Pinto, J.N.: The computer attitude scale. Comput. Hum. Behav. 2, 301–306 (1986). doi: 10.1016/0747-5632(86)90010-5 CrossRefGoogle Scholar
  37. 37.
    Parasuraman, A.: Technology readiness index (TRI). J. Serv. Res.-US 2, 307–320 (2000). doi: 10.1177/109467050024001 CrossRefGoogle Scholar
  38. 38.
    Parasuraman, A., Colby, C.L.: An updated and streamlined technology readiness index: TRI 2.0. J. Serv. Res.-US 18, 59–74 (2015). doi: 10.1177/1094670514539730 CrossRefGoogle Scholar
  39. 39.
    Popovich, P.M., Hyde, K.R., Zakrajsek, T., Blumer, C.: The development of the attitudes toward computer usage scale. Educ. Psychol. Measur. 47, 267–269 (1987). doi: 10.1177/0013164487471035 CrossRefGoogle Scholar
  40. 40.
    Powell, A.L.: Computer anxiety: comparison of research from the 1990s and 2000s. Comput. Hum. Behav. 29, 2337–2381 (2013). doi: 10.1016/j.chb.2013.05.012 CrossRefGoogle Scholar
  41. 41.
    Pozzi, S., Bagnara, S.: Individuation and diversity: the need for idiographic HCI. Theor. Issues Ergon. Sci. 14, 1–21 (2013). doi: 10.1080/1464536X.2011.562564 CrossRefGoogle Scholar
  42. 42.
    Reece, M.J., Gable, R.K.: The development and validation of a measure of general attitudes toward computers. Educ. Psychol. Measur. 42, 913–916 (1982). doi: 10.1177/001316448204200327 CrossRefGoogle Scholar
  43. 43.
    Rosen, L.D., Sears, D.C., Weil, M.M.: Computerphobia. Behav. Res. Meth. Ins. C. 19, 167–179 (1987). doi: 10.3758/BF03203781 CrossRefGoogle Scholar
  44. 44.
    Rotter, J.B.: Generalized expectancies for internal versus external control of reinforcement. Psychol. Monogr.-Gen. Appl. 80, 1–28 (1966). doi: 10.1037/h0092976 CrossRefGoogle Scholar
  45. 45.
    Saucier, G.: Measures of the personality factors found recurrently in human lexicons. In: Boyle, G.J., Matthews, G., Saklofske, D.H. (eds.) The SAGE Handbook of Personality Theory and Assessment. Personality Measurement and Testing, vol. 2, pp. 29–54. Sage Publications, London (2008)Google Scholar
  46. 46.
    Schmettow, M., Drees, M.: What drives the geeks? Linking computerbenthusiasm to achievement goals. In: Proceedings of HCI 2014, Southport, UK, pp. 234–239. BCS Learning and Development Ltd., Swindon (2014)Google Scholar
  47. 47.
    Schulenberg, S.E., Melton, A.M.A.: The computer aversion, attitudes, and familiarity index (CAAFI): a validity study. Comput. Hum. Behav. 24, 2620–2638 (2008). doi: 10.1016/j.chb.2008.03.002 CrossRefGoogle Scholar
  48. 48.
    Senkbeil, M., Ihme, J.M.: Entwicklung und Validierung eines Kurzfragebogens zur Erfassung computerbezogener Anreizfaktoren bei Erwachsenen [Development and Validation of a Short Scale for Computer-Related Motivations in Adults]. Diagnostica (2016). doi: 10.1026/0012-1924/a000170 Google Scholar
  49. 49.
    Shaft, T.M., Sharfman, M.P., Wu, W.W.: Reliability assessment of the attitude towards computers instrument (ATCI). Comput. Hum. Behav. 20, 661–689 (2004). doi: 10.1016/j.chb.2003.10.021 CrossRefGoogle Scholar
  50. 50.
    Simonson, M.R., Maurer, M., Montag-Torardi, M., Whitaker, M.: Development of a standardized test of computer literacy and a computer anxiety index. J. Educ. Comput. Res. 3, 231–247 (1987). doi: 10.2190/7CHY-5CM0-4D00-6JCG CrossRefGoogle Scholar
  51. 51.
    Svendsen, G.B., Johnsen, J.K., Almås-Sørensen, L., Vittersø, J.: Personality and technology acceptance: the influence of personality factors on the core constructs of the technology acceptance model. Behav. Inform. Technol. 32, 323–334 (2013). doi: 10.1080/0144929X.2011.553740 CrossRefGoogle Scholar
  52. 52.
    Szalma, J.L.: Individual differences in human-technology interaction: incorporating variation in human characteristics into human factors and ergonomics research and design. Theor. Issues Ergon. Sci. 10, 381–397 (2009). doi: 10.1080/14639220902893613 CrossRefGoogle Scholar
  53. 53.
    Szalma, J.L.: On the application of motivation theory to human factors/ergonomics: motivational design principles for human-technology interaction. Hum. Factors 56, 1453–1471 (2014). doi: 10.1177/0018720814553471 CrossRefGoogle Scholar
  54. 54.
    Webster, J., Martocchio, J.T.: Microcomputer playfulness: development of a measure with workplace implications. MIS Q. 16, 201–226 (1992). doi: 10.2307/249576 CrossRefGoogle Scholar
  55. 55.
    Wickens, C.D., Hollands, J., Banbury, S., Parasuraman, R.: Engineering Psychology and Human Performance. Pearson, London (2013)Google Scholar
  56. 56.
    Yildirim, C., Correira, A.: Exploring the dimensions of nomophobia: development and validation of a self-reported questionnaire. Comput. Hum. Behav. 49, 130–137 (2015). doi: 10.1016/j.chb.2015.02.059 CrossRefGoogle Scholar
  57. 57.
    Zoltan-Ford, E., Chapanis, A.: What do professional persons think about computers? In: Anderson, J.G., Jay, S.J. (eds.) Use and Impact of Computers in Clinical Medicine, pp. 51–67. Springer, New York (1987). doi: 10.1007/978-1-4613-8674-2_5 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christiane Attig
    • 1
  • Daniel Wessel
    • 2
  • Thomas Franke
    • 2
  1. 1.Department of Psychology, Cognitive and Engineering PsychologyChemnitz University of TechnologyChemnitzGermany
  2. 2.Institute for Multimedia and Interactive Systems, Engineering Psychology and Cognitive ErgonomicsUniversität zu LübeckLübeckGermany

Personalised recommendations