Edit Distance Neighbourhoods of Input-Driven Pushdown Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10304)

Abstract

Edit distance \(\ell \)-neighbourhood of a formal language is the set of all strings that can be transformed to one of the strings in this language by at most \(\ell \) insertions and deletions. Both the regular and the context-free languages are known to be closed under this operation, whereas the deterministic pushdown automata are not. This paper establishes the closure of the family of input-driven pushdown automata (IDPDA), also known as visibly pushdown automata, under the edit distance neighbourhood operation. A construction of automata representing the result of the operation is given, and close lower bounds on the size of any such automata are presented.

References

  1. 1.
    Aho, A.V., Peterson, T.G.: A minimum distance error-correcting parser for context-free languages. SIAM J. Comput. 1(4), 305–312 (1972). http://dx.doi.org/doi/10.1137/0201022 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: ACM Symposium on Theory of Computing, STOC 2004, Chicago, USA 13–16 June 2004, pp. 202–211 (2004). http://dx.doi.org/10.1145/1007352.1007390
  3. 3.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009). http://dx.doi.org/10.1145/1516512.1516518
  4. 4.
    von Braunmühl, B., Verbeek, R.: Input driven languages are recognized in log \(n\) space. Ann. Discrete Math. 24, 1–20 (1985). http://dx.doi.org/10.1016/S0304-0208(08)73072-X MathSciNetMATHGoogle Scholar
  5. 5.
    Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006). doi:10.1007/11779148_12 CrossRefGoogle Scholar
  6. 6.
    Chatterjee, K., Henzinger, T.A., Ibsen-Jensen, R., Otop, J.: Edit distance for pushdown automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 121–133. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47666-6_10 CrossRefGoogle Scholar
  7. 7.
    Han, Y.-S., Ko, K., Salomaa, K.: Approximate matching between a context-free grammar and a finite-state automaton. Inf. Comput. 247, 278–289 (2016). http://dx.doi.org/10.1016/j.ic.2016.02.001 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Han, Y.-S., Salomaa, K.: Nondeterministic state complexity of nested word automata. Theoret. Comput. Sci. 410, 2961–2971 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kutrib, M., Malcher, A., Wendlandt, M.: Tinput-driven pushdown automata. In: Durand-Lose, J., Nagy, B. (eds.) MCU 2015. LNCS, vol. 9288, pp. 94–112. Springer, Cham (2015). doi:10.1007/978-3-319-23111-2_7 CrossRefGoogle Scholar
  10. 10.
    Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition. In: Bakker, J., Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435. Springer, Heidelberg (1980). doi:10.1007/3-540-10003-2_89 CrossRefGoogle Scholar
  11. 11.
    Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms. Int. J. Found. Comput. Sci. 14(6), 957–982 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Han, Y.-S., Ko, S.-K., Salomaa, K.: Generalizations of code languages with marginal errors. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 264–275. Springer, Cham (2015). doi:10.1007/978-3-319-21500-6_21 CrossRefGoogle Scholar
  13. 13.
    Ng, T., Rappaport, D., Salomaa, K.: Descriptional complexity of error detection. In: Adamatzky, A. (ed.) Emergent Computation. ECC, vol. 24, pp. 101–119. Springer, Cham (2017). doi:10.1007/978-3-319-46376-6_6 CrossRefGoogle Scholar
  14. 14.
    Okhotin, A.: Input-driven languages are linear conjunctive. Theoret. Comput. Sci. 618, 52–71 (2016). http://dx.doi.org/10.1016/j.tcs.2016.01.007 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata. SIGACT News 45(2), 47–67 (2014). http://doi.acm.org/10.1145/2636805.2636821 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Okhotin, A., Salomaa, K.: Descriptional complexity of unambiguous input-driven pushdown automata. Theoret. Comput. Sci. 566, 1–11 (2015). http://dx.doi.org/10.1016/j.tcs.2014.11.015 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Okhotin, A., Salomaa, K.: State complexity of operations on input-driven pushdown automata. J. Comput. Syst. Sci. 86, 207–228 (2017). http://dx.doi.org/10.1016/j.jcss.2017.02.001 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Piao, X., Salomaa, K.: Operational state complexity of nested word automata. Theoret. Comput. Sci. 410, 3290–3302 (2009). http://dx.doi.org/10.1016/j.tcs.2009.05.002 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Pighizzini, G.: How hard is computing the edit distance? Inf. Comput. 165, 1–13 (2001)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Povarov, G.: Descriptive complexity of the Hamming neighborhood of a regular language. In: LATA 2007, pp. 509–520 (2007)Google Scholar
  21. 21.
    Salomaa, K., Schofield, P.N.: State complexity of additive weighted finite automata. Int. J. Found. Comput. Sci. 18(6), 1407–1416 (2007)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoret. Comput. Sci. 88(2), 191–229 (1991). http://dx.doi.org/10.1016/0304-3975(91)90374-B MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Terrier, V.: Recognition of linear-slender context-free languages by real time one-way cellular automata. In: Kari, J. (ed.) AUTOMATA 2015. LNCS, vol. 9099, pp. 251–262. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47221-7_19 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySaint PetersburgRussia
  2. 2.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations