Advertisement

Extending Wadge Theory to k-Partitions

  • Victor L. Selivanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10307)

Abstract

We extend some results about Wadge degrees of Borel subsets of Baire space to finite partitions of Baire space. A typical new result is the characterization up to isomorphism of the Wadge degrees of k-partitions with \(\mathbf {\Delta }^0_3\)-components.

Keywords

Baire space Wadge reducibility Lipschitz reducibility Backtrack reducibility k-partition h-preorder Well preorder Infinite game 

References

  1. 1.
    Andretta, A.: More on Wadge determinacy. Ann. Pure Appl. Logic 144(1–3), 2–32 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andretta, A., Martin, D.A.: Borel-Wadge degrees. Fund. Math. 177(2), 175–192 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Block, A.C.: Operations on a Wadge-type hierarchy of ordinal-valued functions. Masters thesis, Universiteit van Amsterdam (2014)Google Scholar
  4. 4.
    van Engelen, F., Miller, A., Steel, J.: Rigid Borel sets and better quasiorder theory. Contemp. Math. 65, 199–222 (1987)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hertling, P.: Topologische Komplexitätsgrade von Funktionen mit endlichem Bild. Informatik-Berichte 152, Fernuniversität Hagen (1993)Google Scholar
  6. 6.
    Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kihara, T., Montalban, A.: The uniform Martin’s conjecture for many-one degrees. arXiv:1608.05065v1 [Math.LO], 17 August 2016
  8. 8.
    Motto Ros, L.: Borel-amenable reducibilities for sets of reals. J. Symbolic Logic 74(1), 27–49 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Selivanov, V.L.: Hierarchies of hyperarithmetical sets and functions. Algebra Logic 22, 473–491 (1983)CrossRefzbMATHGoogle Scholar
  10. 10.
    Selivanov, V.L.: The quotient algebra of labeled forests modulo h-equivalence. Algebra Logic 46, 120–133 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Selivanov, V.L.: Hierarchies of \({\mathbf{\Delta }}^0_2\)-measurable \(k\)-partitions. Math. Logic Q. 53, 446–461 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Selivanov, V.: A fine hierarchy of \(\omega \)-regular k-partitions. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 260–269. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21875-0_28 CrossRefGoogle Scholar
  13. 13.
    Selivanov, V.L.: Fine hierarchies via Priestley duality. Ann. Pure Appl. Logic 163, 1075–1107 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Selivanov, V.L.: Towards a descriptive theory of cb0-spaces. Mathematical Structures in Computer Science, September 2014. doi: 10.1017/S0960129516000177. Earlier version in: arXiv:1406.3942v1 [Math.GN], 16 June 2016
  15. 15.
    Van Wesep, R.: Wadge degrees and descriptive set theory. In: Kechris, A.S., Moschovakis, Y.N. (eds.) Cabal Seminar 76–77. LNM, vol. 689, pp. 151–170. Springer, Heidelberg (1978). doi: 10.1007/BFb0069298 CrossRefGoogle Scholar
  16. 16.
    Wadge, W.: Reducibility and determinateness in the Baire space. Ph.D. thesis, University of California, Berkely (1984)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.A.P. Ershov Institute of Informatics Systems SB RASNovosibirskRussia
  2. 2.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations