Degrees of Categoricity of Rigid Structures

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10307)

Abstract

We prove that there exists a properly 2-c.e. Turing degree \(\mathbf{d}\) which cannot be a degree of categoricity of a rigid structure.

Keywords

Categoricity spectrum Strong degree of categoricity Rigid structure 2-c.e. Turing degrees 

References

  1. 1.
    Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Phil. Trans. R. Soc. Lond. A 248(950), 407–432 (1956)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Mal’tsev, A.I.: Constructive algebras. I. Russ. Math. Surv. 16(3), 77–129 (1961)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Mal’tsev, A.I.: On recursive abelian groups. Sov. Math. Dokl. 32, 1431–1434 (1962)MATHGoogle Scholar
  4. 4.
    Fokina, E.B., Kalimullin, I., Miller, R.: Degrees of categoricity of computable structures. Arch. Math. Logic 49(1), 51–67 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Csima, B.F., Franklin, J.N.Y., Shore, R.A.: Degrees of categoricity and the hyperarithmetic hierarchy. Notre Dame J. Form. Logic 54(2), 215–231 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Anderson, B.A., Csima, B.F.: Degrees that are not degrees of categoricity. Notre Dame J. Form. Logic 57(3), 389–398 (2016)MathSciNetMATHGoogle Scholar
  7. 7.
    Miller, R.: \(\mathbf{d}\)-computable categoricity for algebraic fields. J. Symb. Log. 74(4), 1325–1351 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Miller, R., Shlapentokh, A.: Computable categoricity for algebraic fields with splitting algorithms. Trans. Amer. Math. Soc. 367(6), 3955–3980 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bazhenov, N.A.: Degrees of categoricity for superatomic Boolean algebras. Algebra Logic 52(3), 179–187 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bazhenov, N.A.: \(\Delta ^0_2\)-categoricity of Boolean algebras. J. Math. Sci. 203(4), 444–454 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bazhenov, N.A.: Autostability spectra for Boolean algebras. Algebra Logic 53(6), 502–505 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bazhenov, N.A.: Degrees of autostability relative to strong constructivizations for Boolean algebras. Algebra Logic 55(2), 87–102 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Frolov, A.N.: Effective categoricity of computable linear orderings. Algebra Logic 54(5), 415–417 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bazhenov, N.A.: Degrees of autostability for linear orders and linearly ordered abelian groups. Algebra Logic 55(4), 257–273 (2016)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fokina, E., Frolov, A., Kalimullin, I.: Categoricity spectra for rigid structures. Notre Dame J. Form. Logic. 57(1), 45–57 (2016)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Goncharov, S.S.: Degrees of autostability relative to strong constructivizations. Proc. Steklov Inst. Math. 274, 105–115 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bazhenov, N.A.: Autostability spectra for decidable structures. Math. Struct. Comput. Sci. (to appear). doi:10.1017/S096012951600030X.
  18. 18.
    Bazhenov, N.A., Kalimullin, I., Yamaleev, M.M.: Degrees of categoricity vs. strong degrees of categoricity. Algebra Logic 55(2), 173–177 (2016)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations