Character-Based Phylogeny Construction and Its Application to Tumor Evolution

  • Gianluca Della Vedova
  • Murray Patterson
  • Raffaella Rizzi
  • Mauricio Soto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10307)

Abstract

Character-based Phylogeny Construction is a well-known combinatorial problem whose input is a matrix M and we want to compute a phylogeny that is compatible with the actual species encoded by M.

In this paper we survey some of the known formulations and algorithms for some variants of this problem. Finally, we present the connections between these problems and tumor evolution, and we discuss some of the most important open problems.

References

  1. 1.
    Agarwala, R., Fernández-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM J. Comput. 23(6), 1216–1224 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny: a direct approach. J. Comput. Biol. 10(3–4), 323–340 (2003)CrossRefGoogle Scholar
  3. 3.
    Benham, C., Kannan, S., Paterson, M., Warnow, T.: Hen’s teeth and whale’s feet: generalized characters and their compatibility. J. Comp. Biol. 2(4), 515–525 (1995)CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992). doi:10.1007/3-540-55719-9_80 CrossRefGoogle Scholar
  5. 5.
    Bonizzoni, P.: A linear-time algorithm for the perfect phylogeny haplotype problem. Algorithmica 48(3), 267–285 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bonizzoni, P., Braghin, C., Dondi, R., Trucco, G.: The binary perfect phylogeny with persistent characters. Theor. Comput. Sci. 454, 51–63 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bonizzoni, P., Carrieri, A.P., Della Vedova, G., Rizzi, R., Trucco, G.: A colored graph approach to perfect phylogeny with persistent characters. Theor. Comput. Sci. 658, 60–73 (2016)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bonizzoni, P., Carrieri, A.P., Della Vedova, G., Trucco, G.: Explaining evolution via constrained persistent perfect phylogeny. BMC Genomics 15(6), S10 (2014)CrossRefGoogle Scholar
  9. 9.
    Bonizzoni, P., Della Vedova, G., Trucco, G.: Solving the persistent phylogeny problem in polynomial time. CoRR, abs/1611.01017 (2016)Google Scholar
  10. 10.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Buneman, P.: The recovery of trees from measures of dissimilarity. In: Hodson, F.R., Kendall, D.G., Tautu, P. (eds.) Mathematics in the Archaelogical and Historical Sciences. Edinburgh University Press, Edinburgh (1971)Google Scholar
  12. 12.
    Ding, L., Raphael, B.J., Chen, F., Wendl, M.C.: Advances for studying clonal evolution in cancer. Cancer Lett. 340(2), 212–219 (2013)CrossRefGoogle Scholar
  13. 13.
    Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny haplotyping (PPH) problem. J. Comput. Biol. 13(2), 522–553 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    El-Kebir, M., Oesper, L., Acheson-Field, H., Raphael, B.J.: Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics 31(12), i62–i70 (2015)CrossRefGoogle Scholar
  15. 15.
    El-Kebir, M., Satas, G., Oesper, L., Raphael, B.: Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. Cell Syst. 3(1), 43–53 (2016)CrossRefGoogle Scholar
  16. 16.
    Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2004)Google Scholar
  17. 17.
    Fernandez-Baca, D.: The perfect phylogeny problem. In: Du, D.Z., Cheng, X. (eds.) Steiner Trees in Industries. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  18. 18.
    Goldberg, L.A., Goldberg, P.W., Phillips, C.A., Sweedyk, E., Warnow, T.: Minimizing phylogenetic number to find good evolutionary trees. Discrete Appl. Math. 71(1–3), 111–136 (1996)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: Haplotyping with missing data via perfect path phylogenies. Discrete Appl. Math. 155, 788–805 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Greaves, M., Maley, C.C.: Clonal evolution in cancer. Nature 481(7381), 306–313 (2012)CrossRefGoogle Scholar
  21. 21.
    Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  23. 23.
    Gusfield, D.: Persistent phylogeny: a galled-tree and integer linear programming approach. In: Proceedings of the 6th ACM BCB Conference, pp. 443–451 (2015)Google Scholar
  24. 24.
    Hajirasouliha, I., Mahmoody, A., Raphael, B.J.: A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data. Bioinformatics 30(12), i78–i86 (2014)CrossRefGoogle Scholar
  25. 25.
    Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration of perfect phylogenies. SIAM J. Comput. 26(6), 1749–1763 (1997)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kollar, E., Fisher, C.: Tooth induction in chick epithelium: expression of quiescent genes for enamel synthesis. Science 207, 993–995 (1980)CrossRefGoogle Scholar
  27. 27.
    Lawrence, M.S., Stojanov, P., et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214–218 (2013)CrossRefGoogle Scholar
  28. 28.
    Maňuch, J., Patterson, M., Gupta, A.: On the generalised character compatibility problem for non-branching character trees. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 268–276. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02882-3_27 CrossRefGoogle Scholar
  29. 29.
    Maňuch, J., Patterson, M., Gupta, A.: Towards a characterisation of the generalised cladistic character compatibility problem for non-branching character trees. In: Chen, J., Wang, J., Zelikovsky, A. (eds.) ISBRA 2011. LNCS, vol. 6674, pp. 440–451. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21260-4_41 CrossRefGoogle Scholar
  30. 30.
    Miller, C.A., et al.: Sciclone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput. Biol. 10(8), e1003665 (2014)CrossRefGoogle Scholar
  31. 31.
    Navin, N.E.: Cancer genomics: one cell at a time. Genome Biol. 15(8), 452 (2014)CrossRefGoogle Scholar
  32. 32.
    Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny. Siam J. Comput. 33(3), 590–607 (2004)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Przytycka, T., Davis, G., Song, N., Durand, D.: Graph theoretical insights into evolution of multidomain proteins. J. Comput. Biol. 13(2), 351–363 (2006)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    van Rens, K.E., Mäkinen, V., Tomescu, A.I.: SNV-PPILP: refined SNV calling for tumor data using perfect phylogenies and ILP. Bioinf. 31(7), 1133–1135 (2015)CrossRefGoogle Scholar
  35. 35.
    Roth, A., Khattra, J., et al.: Pyclone: statistical inference of clonal population structure in cancer. Nat. Methods 11(4), 396–398 (2014)CrossRefGoogle Scholar
  36. 36.
    Steel, M.A.: Phylogeny: Discrete and Random Processes in Evolution. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (2016)CrossRefMATHGoogle Scholar
  37. 37.
    Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gianluca Della Vedova
    • 1
  • Murray Patterson
    • 1
  • Raffaella Rizzi
    • 1
  • Mauricio Soto
    • 1
  1. 1.DISCoUniversity of Milano–BicoccaMilanItaly

Personalised recommendations