Advertisement

Heart Rate Complexity Associated with Diabetic Cardiac Neuropathy

  • Herbert F. Jelinek
  • David J. Cornforth
Chapter

Abstract

Cardiac autonomic neuropathy (CAN) is a serious complication of diabetes mellitus that often leads to increased morbidity and mortality. An examination of heart rate provides an opportunity to investigate the functional attributes of the autonomic nervous system (ANS) and specifically cardiac rhythm. Measuring changes in heart rate is non-invasive and may indicate increased risk of arrhythmic events associated with cardiac autonomic neuropathy (CAN) leading to sudden cardiac death, especially in diabetes mellitus. However, it is also a surrogate marker for advancement of diabetic neuropathy affecting other organ systems, and pathologies that affect neural function, such as depression, schizophrenia, and Parkinson’s disease. ANS modulation of the cardiac rhythm leads to short and long-term non-stationary and nonlinear changes in heart rate. In line with this inherent complexity, computational analytics are required that are sensitive yet robust enough to adequately describe this complexity. Entropy measures are a natural candidate for this application as they are able to estimate information content or complexity of the heart rate.

A number of different approaches have been used, as there are many variations of entropy measures. Empirical studies suggest that multiscale Rényi entropy allows a clear picture to emerge, that describes the advancement of diabetic neuropathy and specifically cardiac autonomic neuropathy from a preclinical, non-symptomatic stage to severe signs and symptoms of disease. This chapter describes the use of multiscale Rényi entropy to diagnose CAN progression. One hundred and forty nine ECGs were recorded at 400 samples/s of 71 controls, 67 participants with early CAN and 11 with definite CAN. All recordings were preprocessed and analysed using a number of nonlinear algorithms (Multiscale Entropy, multiscale DFA and multiscale Rényi Entropy). The results indicate that Rényi entropy is a better diagnostic tool to assess CAN progression with an area under the curve (AUC) of 0.723, 0.692 and 0.862 for differentiating no CAN from early CAN, early from definite CAN and no CAN from definite CAN respectively p ¡ 0.05. Using machine learning algorithms to identify the best subset of measures for CAN classification, an accuracy of 71% was obtained for differentiating no CAN from early CAN. Identification of early, asymptomatic disease is of great clinical importance as early intervention is known to have the best health outcomes. The current work suggests that Rényi entropy has the best discriminatory power for identifying early CAN.

References

  1. 1.
    Valensi, P., Johnson, N., Maison-Blanche, P., Estramania, F., Motte, G., Coumel, P.: Influence of cardiac autonomic neuropathy on heart rate variability dependence of ventricular repolarization in diabetic patients. Diabetes Care 25, 918–923 (2002)CrossRefPubMedGoogle Scholar
  2. 2.
    Vinik, A., Maser, R., Mitchell, B., Freeman, R.: Diabetic autonomic neuropathy. Diabetes Care 26, 1553–1579 (2003)CrossRefPubMedGoogle Scholar
  3. 3.
    Tarvainen, M., Cornforth, D.J., Kuoppa, P., Lipponen, J., Jelinek, H.F.: Complexity of heart rate variability in type 2 diabetes-effect of hyperglycemia. In: Proceedings of the 35th Annual International Conference of the Engineering in Medicine and Biology Society (EMBS), Osaka, July 2013, pp. 5558–5561Google Scholar
  4. 4.
    Pop-Busui, R.: Cardiac autonomic neuropathy in diabetes. Diabetes Care 33, 434–441 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ziegler, D., Gries, F., Spuler, M., Lessmann, F.: Diabetic cardiovascular autonomic neuropathy multicenter study group. The epidemiology of diabetic neuropathy. J. Diabet. Complicat. 6, 49–57 (1992)Google Scholar
  6. 6.
    Malliani, A., Pagani, M., Lombardi, F., Cerutti, S.: Cardiovascular neural regulation explored in the frequency domain. Circulation 84(2), 482–492 (1991)CrossRefPubMedGoogle Scholar
  7. 7.
    Goldberger, J.: Sympathovagal balance: how should we measure it? Am. J. Physiol. Heart Circ. Physiol. 276(4), H1273–H1280 (1999)Google Scholar
  8. 8.
    Johnston, S., Easton, J.: Are patients with acutely recovered cerebral ischemia more unstable? Stroke 4, 2446 (2003)CrossRefGoogle Scholar
  9. 9.
    Rollins, M., Jenkins, J.G., Carson, D.,McGlure, B., Mitchell, R.H., Imam, S.: Power spectral analysis of the electrocardiogram in diabetic children. Diabetologia 35, 452–455 (1992)CrossRefPubMedGoogle Scholar
  10. 10.
    Spallone, V., Menzinger, G.: Diagnosis of cardiovascular autonomic neuropathy in diabetes. Diabetes 46, S67–S76 (1997)CrossRefPubMedGoogle Scholar
  11. 11.
    Ziegler, D.: Diabetic cardiovascular autonomic neuropathy: prognosis, diagnosis and treatment. Diabetes Metab. Rev. 10, 339–383 (1994)CrossRefPubMedGoogle Scholar
  12. 12.
    Jelinek, H., Pham, P., Struzik, Z., Spence, I.: Short term ECG recording for the identification of cardiac autonomic neuropathy in people with diabetes mellitus. In: Nineteenth International Conference on Noise and Fluctuations. IEEE Press, New York (2007), pp. 683–686Google Scholar
  13. 13.
    Ewing, D., Borsey, D., Bellavere, F., Clarke, B.: Cardiac autonomic neuropathy in diabetes: comparison of measures of R-R interval variation. Diabetologia 21(1), 18–24 (1981)CrossRefPubMedGoogle Scholar
  14. 14.
    Flynn, A., Jelinek, H.F., Smith, M.C.: Heart rate variability analysis: a useful assessment tool for diabetes associated cardiac dysfunction in rural and remote areas. Aust. J. Rural Health 13, 77–82 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    Vinik, A., Erbas, T., Casellini, C.: Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J. Diab. Investig. 4, 4–18 (2013)CrossRefGoogle Scholar
  16. 16.
    Laitio, T., Jalonen, J., Kuusela, T., Scheinin, H.: The role of heart rate variability in risk stratification for adverse postoperative cardiac events. Anesth. Analg. 105(6), 1548–1560 (2007)CrossRefPubMedGoogle Scholar
  17. 17.
    Task Force of the European Society of Cardiology: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996)Google Scholar
  18. 18.
    Sacre, J., Jellis, C., Marwick, T., Coombes, J.: Reliability of heart rate variability in patients with type 2 diabetes mellitus. Diabet. Med. 29, e33–e40 (2012)CrossRefPubMedGoogle Scholar
  19. 19.
    Khandoker, A., Jelinek, H., Palaniswami, M.: Identifying diabetic patients with cardiac autonomic neuropathy by heart rate complexity analysis. Biomed. Eng. OnLine 8, 3 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Liao, D., Cai, J., Brancati, F., Folsom, A., Barnes, R., Tyroler, H., Heiss, G.: Association of vagal tone with serum insulin, glucose, and diabetes mellitus - the ARIC study. Diabetes Res. Clin. Pract. 30(3), 211–221 (1995)CrossRefPubMedGoogle Scholar
  21. 21.
    Singh, J., Larson, M., O’Donnell, C., Wilson, P., Tsuji, H., Lloyd-Jones, D., Levy, D.: Association of hyperglycemia with reduced heart rate variability (the Framingham heart study). Am. J. Cardiol. 86(3), 309–312 (2000)CrossRefPubMedGoogle Scholar
  22. 22.
    Santini, V., Ciampittiello, G., Gigli, F., Bracaglia, D., Baroni, A., Cicconetti, E., Verri, C., Gambardella, S., Frontoni, S.: QTc and autonomic neuropathy in diabetes: effects of acute hyperglycaemia and n-3 PUFA. Nutr. Metab. Cardiovasc. Dis. 17(10), 712–718 (2007)CrossRefPubMedGoogle Scholar
  23. 23.
    Tarvainen, M., Laitinen, T., Lipponen, J., Cornforth, D., Jelinek, H.: Cardiac autonomic dysfunction in type 2 diabetes - effect of hyperglycemia and disease duration. Front. Endocrinol. 5, 1–9 (2014)CrossRefGoogle Scholar
  24. 24.
    Balian, R.: Entropy, a protean concept. In: Dalibard, J. (ed.) Poincaré Seminar 2003: Bose-Einstein Condensation - Entropy, pp. 119–144. Birkhauser, Basel (2004)CrossRefGoogle Scholar
  25. 25.
    Richman, J., Moorman, J.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)PubMedGoogle Scholar
  26. 26.
    Costa, M., Goldberger, A., Peng, C.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89, 068102 (2002)CrossRefPubMedGoogle Scholar
  27. 27.
    Costa, M., Goldberger, A., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 021906 (2005)CrossRefGoogle Scholar
  28. 28.
    Xu, D., Erdogmuns, D.: Renyi’s Entropy, Divergence and Their Nonparametric Estimators, pp. 47–102. Springer, New York (2010)Google Scholar
  29. 29.
    Kurths, J., Voss, A., Saparin, P., Witt, A., Kleiner, H., Wessel, N.: Quantitative analysis of heart rate variability. Chaos 5, 88–94 (1995)CrossRefPubMedGoogle Scholar
  30. 30.
    Rényi, A.: On measures of information and entropy. In: Proceedings of the fourth Berkeley Symposium on Mathematics, Statistics and Probability, Berkely, CA (1960), pp. 547–561Google Scholar
  31. 31.
    Cornforth, D., Tarvainen, M., Jelinek, H.: How to calculate renyi entropy from heart rate variability, and why it matters for detecting cardiac autonomic neuropathy. Front. Bioeng. Biotechnol. 2, 34 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jelinek, H., Wilding, C., Tinley, P.: An innovative multi-disciplinary diabetes complications screening programme in a rural community: a description and preliminary results of the screening. Am. J. Public Health 12, 14–20 (2006)Google Scholar
  33. 33.
    Javorka, M., Trunkvalterova, Z., Tonhajzerova, I., Javorkova, J., Javorka, K., Baumert, M.: Short-term heart rate complexity is reduced in patients with type 1 diabetes mellitus. Clin. Neurophysiol. 119, 1071–1081 (2008)CrossRefPubMedGoogle Scholar
  34. 34.
    Ewing, D., Martyn, C., Young, R., Clarke, B.: The value of cardiovascular autonomic functions tests: 10 years experience in diabetes. Diabetes Care 8, 491–498 (1985)CrossRefPubMedGoogle Scholar
  35. 35.
    Tarvainen, M., Ranta-Aho, P., Karjalainen, P.: An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 49, 172–175 (2002)CrossRefPubMedGoogle Scholar
  36. 36.
    Cornforth, D, Jelinek, H., Tarvainen, M.: A comparison of nonlinear measures for the detection of cardiac autonomic neuropathy from heart rate variability. Entropy 17, 1425–1440 (2015)CrossRefGoogle Scholar
  37. 37.
    Goldberger, A., West, B.: Fractals in physiology and medicine. Yale J. Biol. Med. 60, 421–435 (1987)PubMedPubMedCentralGoogle Scholar
  38. 38.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003) [Online]. Available: http://dl.acm.org/citation.cfm?id=944919.944968
  39. 39.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2006). ISBN: 1-55860-901-6Google Scholar
  40. 40.
    Cornforth, D., Tarvainen, M., Jelinek, H.: Automated selection of measures of heart rate variability for detection of early cardiac autonomic neuropathy. In: Proceedings of Computers in Cardiology, Cambridge, MA, Sept 2014, pp. 93–96Google Scholar
  41. 41.
    Jelinek, H., Alothman, T., Cornforth, D., Khalaf, K., Khandoker, A.: Effect of biosignal preprocessing and recording length on clinical decision making for cardiac autonomic neuropathy. In: Eighth Conference of the European Study Group on Cardiovascular Oscillations (ESGCO), May 2014, pp. 3–4Google Scholar
  42. 42.
    Bigger, J., Fleiss, J., Rolnitzky, L., Steinman, R.: The ability of several short-term measures of RR variability to predict mortality after myocardial infarction. Circulation 88, 927–934 (1993)CrossRefPubMedGoogle Scholar
  43. 43.
    Sinnreich, R., Kark, J., Sapoznikov, D., Luria, M.: Five minute recordings of heart rate variability for population studies: repeatability and age-sex characteristics. Heart 80, 156–163 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    de Bruyne, M., Kors, J., Hoes, A., Klootwijk, P., Dekker, J., Hofman, A., van Bemmel, J., Grobbee, D.: Both decreased and increased heart rate variability on the standard 10-second electrocardiogram predict cardiac mortality in the elderly. Am. J. Epidemiol. 150, 1282–1288 (1999)CrossRefPubMedGoogle Scholar
  45. 45.
    Hodgart, E., Clark, E., Macfarlane, P., Latif, S.: Short term measures of heart rate variability. In: Proceedings of the 31st International Congress on Electrocardiology, pp. 174–181 (2005)Google Scholar
  46. 46.
    Smith, A., Owen, H., Reynolds, K.: Heart rate variability indices for very short-term (30 beat) analysis. Part 1: survey and toolbox. J. Clin. Monit. Comput. 27, 569–576 (2013)Google Scholar
  47. 47.
    Wessel, N., Voss, A., Malberg, H., Ziehmann, C., Voss, H., Schirdewan, A., Meyerfeldt, U., Kurths, J.: Nonlinear analysis of complex phenomena in cardiological data. Herzschrittmacher Therapie Elektrophysiol 11, 159–173 (2000)CrossRefGoogle Scholar
  48. 48.
    Sassi, R., Signorini, M., Cerutti, S.: Multifractality and heart rate variabilit. Chaos 19, 028507 (2009)CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Community HealthCharles Sturt UniversityAlburyAustralia
  2. 2.School of Electrical Engineering and ComputingUniversity of NewcastleCallaghanAustralia

Personalised recommendations