Advertisement

Mindfulness and Asynchronous Neurofeedback: Coping with Mind Wandering

  • Alessandro Marcengo
  • Emanuela Sabena
  • Angelo Crea
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10279)

Abstract

Mindfulness has taken over the past 25 years a status of autonomous paradigm in some medical and psychotherapeutic disciplines that have generated a pervasive interest about its clinical applications and the nourishment of the individual well-being. This tendency coexists with a technological direction that in recent years has enabled the development of personal and portable devices for EEG neurofeedback (already used to support the treatment of ADHD, DOC, autism, depression, anxiety disorders, etc.) easily usable in real life situations by the individual. We will discuss the pros and cons about the convergence between these two trends through the results of an 11 month autoetnographic study and the analysis of the data gathered during the long period usage of a personal meditation neurofeedback device.

Keywords

Mindfulness MBSR Neurofeedback EEG Quantified Self 

References

  1. 1.
    Marcengo, A., Rapp, A.: Visualization of human behavior data: the Quantified Self. In: Huang, L.H., Huang, W. (eds.) Innovative Approaches of Data Visualization and Visual Analytics, pp. 236–265. IGI Global, Hershey (2013). doi: 10.4018/978-1-4666-4309-3
  2. 2.
    Rapp, A., Tirassa, M.: Know thyself: a theory of the self for personal informatics. Hum. Comput. Interact. (2017). doi: 10.1080/07370024.2017.1285704
  3. 3.
    Rapp, A., Cena, F., Kay, J., Kummerfeld, B., Hopfgartner. F., Plumbaum, T., Larsen, J. E.: New frontiers of Quantified Self: finding new ways for engaging users in collecting and using personal data. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers (UbiComp/ISWC 2015 Adjunct), pp. 969–972. ACM, New York (2015). doi: 10.1145/2800835.2807947
  4. 4.
    Rapp, A., Cena, F., Kay, J., Kummerfeld, B., Hopfgartner, F., Plumbaum, T., Larsen, J.E., Epstein, D.A., Gouveia, R.: New frontiers of Quantified Self 2: going beyond numbers. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (UbiComp 2016), pp. 506–509. ACM, New York (2016). doi: 10.1145/2968219.2968331
  5. 5.
    Sarzotti, F., Lombardi, I., Rapp, A., Marcengo, A., Cena, F.: Engaging users in self-reporting their data: a tangible interface for Quantified Self. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2015. LNCS, vol. 9176, pp. 518–527. Springer, Cham (2015). doi: 10.1007/978-3-319-20681-3_49 CrossRefGoogle Scholar
  6. 6.
    Banaee, H., Ahmed, M.U., Loutfi, A.: Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors 13, 17472–17550 (2013)CrossRefGoogle Scholar
  7. 7.
    Cena, F., Likavec, S., Rapp, A., Marcengo, A.: An ontology for Quantified Self: capturing the concepts behind the numbers. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (UbiComp 2016), pp. 602–604. ACM, New York (2016). doi: 10.1145/2968219.2968329
  8. 8.
    Nafus, D., Denman, P., Durham, L., Florez, O., Nachman, L., Sahay, S., Savage, E., Sharma, S., Strawn, D., Wouhaybi, R.H.: As simple as possible but no simpler: creating flexibility in personal informatics. In: CHI 2016 Extended Abstracts. ACM, New York (2016)Google Scholar
  9. 9.
    Hilviu, D., Rapp, A.: Narrating the Quantified Self. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers (UbiComp/ISWC 2015 Adjunct), pp. 1051–1056. ACM, New York (2015). doi: 10.1145/2800835.2800959
  10. 10.
    Epstein, D.A., Cordeiro, F., Bales, E., Fogarty, J., Munson, S.: Taming data complexity in lifelogs: exploring visual cuts of personal informatics data. In: Proceedings of the DIS 2014 Conference on Designing Interactive Systems. ACM, New York (2014)Google Scholar
  11. 11.
    Rapp, A., Cena, F.: Self-monitoring and technology: challenges and open issues in personal informatics. In: Stephanidis, C., Antona, M. (eds.) UAHCI 2014. LNCS, vol. 8516, pp. 613–622. Springer, Cham (2014). doi: 10.1007/978-3-319-07509-9_58 CrossRefGoogle Scholar
  12. 12.
    Rapp, A., Cena, F.: Personal informatics for everyday life: how users without prior self-tracking experience engage with personal data. Int. J. Hum Comput Stud. 94, 1–17 (2016). doi: 10.1016/j.ijhcs.2016.05.006 CrossRefGoogle Scholar
  13. 13.
    Rapp, A., Cena, F.: Affordances for self-tracking wearable devices. In: Proceedings of International Symposium on Wearable Computers (ISWC 2015), pp. 141–142. ACM, New York (2015). doi: 10.1145/2802083.2802090
  14. 14.
    Rapp, A., Cena, F., Hilviu, D., Tirassa, M.: Human body and smart objects. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers (UbiComp/ISWC 2015 Adjunct), pp. 939–943. ACM, New York (2015). doi: 10.1145/2800835.2806204
  15. 15.
    Cardillo, D., Rapp, A., Benini, S., Console, L., Simeoni, R., Guercio, E., Leonardi, R.: The art of video MashUp: supporting creative users with an innovative and smart application. Multimedia Tools Appl. 53(11), 1–23 (2011). doi: 10.1007/s11042-009-0449-7 CrossRefGoogle Scholar
  16. 16.
    Rapp, A.: A qualitative investigation of gamification: motivational factors in online gamified services and applications. Int. J. Technol. Hum. Interact. 11(1), 67–82 (2015). doi: 10.4018/ijthi.2015010105 CrossRefGoogle Scholar
  17. 17.
    Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From game design elements to gamefulness: defining “gamification”. In: Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments (MindTrek 2011), pp. 9–15 (2011)Google Scholar
  18. 18.
    Rapp, A., Marcengo, M., Console, L., Simeoni, R.: Playing in the wild: enhancing user engagement in field evaluation methods. In: Proceeding of the 16th International Academic MindTrek Conference (MindTrek 2012), pp. 227–228. ACM, New York (2012). doi: 10.1145/2393132.2393180
  19. 19.
    Rapp, A., Cena, F., Gena, C., Marcengo, A., Console, L.: Using game mechanics for field evaluation of prototype social applications: a novel methodology. Behav. Inf. Technol. 35(3), 184–195 (2016). doi: 10.1080/0144929X.2015.1046931 CrossRefGoogle Scholar
  20. 20.
    Rapp, A.: Designing interactive systems through a game lens: an ethnographic approach. Comput. Hum. Behav. (2015). doi: 10.1016/j.chb.2015.02.048
  21. 21.
    Rapp. A.: Drawing inspiration from world of warcraft: gamification design elements for behavior change technologies. Interact. Comput. (2017). doi: 10.1093/iwc/iwx001
  22. 22.
    Rapp, A.: Meaningful game elements for personal informatics. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers: Adjunct Program (ISWC 2014 Adjunct), pp. 125–130. ACM, New York (2014). doi: 10.1145/2641248.2642734
  23. 23.
    Cena, F., Likavec, S., Rapp, A.: Quantified Self and modeling of human cognition. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers (UbiComp/ISWC 2015 Adjunct), pp. 1021–1026. ACM, New York (2015). doi: 10.1145/2800835.2800954
  24. 24.
    Vidal, M., Nguyen, D.H., Lyons, K.: Looking at or through?: using eye tracking to infer attention location for wearable transparent displays. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers (ISWC 2014), pp. 87–90. ACM, New York (2014)Google Scholar
  25. 25.
    Ishimaru, S., Dingler, T., Kunze, K., Kise, K., Dengel, A.: Reading interventions: tracking reading state and designing interventions. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (UbiComp 2016), pp. 1759–1764. ACM, New York (2016)Google Scholar
  26. 26.
    Matassa, A., Rapp, A., Simeoni, R.: Wearable accessories for cycling: tracking memories in urban spaces. In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication (UbiComp 2013 Adjunct), pp. 415–424. ACM, New York (2013). doi: 10.1145/2494091.2495973
  27. 27.
    Sas, C., Chopra, R.: Meditaid: a wearable adaptive neurofeedback-based system for training mindfulness state. Pers. Ubiquit. Comput. 19(7), 1169–1182 (2015)CrossRefGoogle Scholar
  28. 28.
    Kasamatsu, A., Hirai, T.: An electroencephalographic study on the Zen meditation (Zazen). Psychiatry Clin. Neurosci. 20(4), 315–336 (1966)CrossRefGoogle Scholar
  29. 29.
    Lutz, A., Greischar, L.L., Rawlings, N.B., Ricard, M., Davidson, R.J.: Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc. Nat. Acad. Sci. USA 101(46), 16369–16373 (2004)CrossRefGoogle Scholar
  30. 30.
    Butnik, S.M.: Neurofeedback in adolescents and adults with attention deficit hyperactivity disorder. J. Clin. Psychol. 61(5), 621–625 (2005)CrossRefGoogle Scholar
  31. 31.
    Dooley, C.: The impact of meditative practices on physiology and neurology: a review of the literature. Sci. Discipulorium 4, 35–59 (2009)Google Scholar
  32. 32.
    Cahn, B.R., Polich, J.: Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull. 132(2), 180–211 (2006)CrossRefGoogle Scholar
  33. 33.
    Fell, J., Axmacher, N., Haupt, S.: From alpha to gamma: electrophysiological correlates of meditation-related states of consciousness. Med. Hypotheses 75(2), 218–224 (2010)CrossRefGoogle Scholar
  34. 34.
    Stinson, B., Arthur, D.: A novel EEG for alpha brain state training, neurobiofeedback and behavior change. Complement. Ther. Clin. Pract. 19(3), 114–118 (2013)CrossRefGoogle Scholar
  35. 35.
    Travis, F.: Autonomic and EEG patterns distinguish transcending from other experiences during transcendental meditation practice. Int. J. Psychophysiol. 42, 1–9 (2001)CrossRefGoogle Scholar
  36. 36.
    Sterman, M., Egner, T.: Foundation and practice of neurofeedback for the treatment of epilepsy. Appl. Psychophysiol. Biofeedback 31(1), 21–35 (2006)CrossRefGoogle Scholar
  37. 37.
    Fernández, T., Herrera, W., Harmony, T., Díaz-Comas, L., Santiago, E., Sánchez, L., Bosch, J., Fernández-Bouzas, A., Otero, G., Ricardo-Garcell, J., Barraza, C., Aubert, E., Galán, L., Valdés, P.: Eeg and behavioral changes following neurofeedback treatment in learning disabled children. Clin. EEG Neurosci. 34(3), 145–152 (2003)CrossRefGoogle Scholar
  38. 38.
    Kouijzer, M.E., de Moor, J.M., Gerrits, B.J., Buitelaar, J.K., van Schie, H.T.: Long-term effects of neurofeedback treatment in autism. Res. Autism Spectr. Disord. 3(2), 496–501 (2009)CrossRefGoogle Scholar
  39. 39.
    Thilo, H.: The sensorium: a multimodal neurofeedback environment. Adv. Hum. Comput. Interact. 10 pages (2011). Article 3Google Scholar
  40. 40.
    Marcengo, A., Rapp, A., Cena, F., Geymonat, M.: The falsified self: complexities in personal data collection. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2016. LNCS, vol. 9737, pp. 351–358. Springer, Cham (2016). doi: 10.1007/978-3-319-40250-5_34 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alessandro Marcengo
    • 1
  • Emanuela Sabena
    • 1
  • Angelo Crea
    • 1
  1. 1.BeMindfulTurinItaly

Personalised recommendations