Robotic Assistants for Universal Access

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10279)

Abstract

Much research is now focusing on how technology is moving away from the traditional computer to a range of smart devices in smart environments, the so-called Internet of Things. With this increase in computing power and decrease in form factor, we are approaching the possibility of a new generation of robotic assistants able to perform a range of tasks and activities to support all kinds of users. However, history shows that unless care is taken early in the design process, the users who may stand to benefit the most from such assistance may inadvertently be excluded from it. This paper examines some of those historical missteps and examines possible ways forward to ensure that the next generation robots support the principles of universal access.

Keywords

Robotic assistants HCI Inclusive design Universal access Assistive technology 

References

  1. 1.
    Bright, P.: Moore’s Law really is dead this time. Ars Technica (2016). https://arstechnica.com/information-technology/2016/02/moores-law-really-is-dead-this-time/
  2. 2.
    Acharya, D., Kumar, V., Han, H.J.: Performance evaluation of data intensive mobile healthcare test-bed in a 4G environment. In: Proceedings of the 2nd ACM International Workshop on Pervasive Wireless Healthcare (MobileHealth 2012), pp. 21–26. ACM, New York (2012). doi:10.1145/2248341.2248353
  3. 3.
    Ball, L., Szymkowiak, A., Keates, S., Bradley, D., Brownsell, S.: eHealth and the internet of things. In: Proceedings of the 3rd International Conference on Pervasive Embedded Computing and Communication Systems, pp. 139–142. SCITEPRESS, Barcelona (2013). doi:10.5220/0004336701390142
  4. 4.
    Keates, S.: A pedagogical example of teaching Universal Access. Int. J. Univ. Access Inf. Soc. 14(1), 97–110 (2015). doi:10.1007/s10209-014-0398-4. SpringerCrossRefGoogle Scholar
  5. 5.
    Cooper, A.: The Inmates are Running the Asylum. SAMS Publishing, Indianapolis (1999)CrossRefGoogle Scholar
  6. 6.
    Buhler, C.: Robotics for rehabilitation – A European(?) perspective. In: Proceedings of the 5th International Conference on Rehabilitation Robotics (ICORR 1997), Bath, UK, pp. 5–11 (1997)Google Scholar
  7. 7.
    Mahoney, R.: Robotic products for rehabilitation: status and strategy. In: Proceedings of the 5th International Conference on Rehabilitation Robotics (ICORR 1997), Bath, UK. pp. 12–17 (1997)Google Scholar
  8. 8.
    Topping, M.J., Smith, J.K.: The development of handy 1. A robotic system to assist the severely disabled. Technol. Disabil. 10(2), 95–105 (1999)Google Scholar
  9. 9.
    Tijsma, H.A., Liefhebber, F., Herder, J.L.: Evaluation of new user interface features for the manus robot arm. In: 9th International Conference on Rehabilitation Robotics, ICORR 2005, pp. 258–263. IEEE (2005). doi:10.1109/ICORR.2005.1501097
  10. 10.
    Dallaway, J.L., Mahoney, R.M., Jackson, R.D., Gosine, R.G.: An interactive robot control environment for rehabilitation applications. Robotica 11(6), 541–551 (1993). doi:10.1017/S0263574700019391 CrossRefGoogle Scholar
  11. 11.
    Keates, S., Robinson, P.: Gestures and multimodal input. Behav. Inf. Technol. 18(1), 36–44 (1999). doi:10.1080/014492999119237. Taylor and Francis Ltd.CrossRefGoogle Scholar
  12. 12.
    Blessing, L.T.M., Chakrabati, A., Wallace, K.: A design research methodology. In: Proceedings of International Conference on Engineering Design 1995, Prague, Czech Republic, vol. 1, pp. 50–55 (1995)Google Scholar
  13. 13.
    Nielsen, J.: Usability Engineering. Morgan Kaufman Publishers, San Francisco (1993)MATHGoogle Scholar
  14. 14.
    Card, S.K., Moran, T.P., Newell, A.: The Psychology of Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale (1983)Google Scholar
  15. 15.
    Keates, S.: Designing for Accessibility: A Business Guide to Countering Design Exclusion. Lawrence Erlbaum Associates/CRC Press, Mahwah (2006)Google Scholar
  16. 16.
    Keates, S., Clarkson, P.J., Robinson, P.: Designing a usable interface for an interactive robot. In: Proceedings of the 6th International Conference on Rehabilitation Robotics (ICORR 1999), Stanford, CA, pp. 156–162 (1999)Google Scholar
  17. 17.
    Jodi Forlizzi, J., DiSalvo, C.: Service robots in the domestic environment: a study of the roomba vacuum in the home. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction (HRI 2006), pp. 258–265. ACM, New York (2006). doi:10.1145/1121241.1121286
  18. 18.
    Keates, S., Kozloski, J., Varker, P.: Cognitive impairments, HCI and daily living. In: Stephanidis, C. (ed.) UAHCI 2009. LNCS, vol. 5614, pp. 366–374. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02707-9_42 CrossRefGoogle Scholar
  19. 19.
    Keates, S.: Engineering design for mechatronics—a pedagogical perspective. In: Hehenberger, P., Bradley, D. (eds.) Mechatronic Futures, pp. 221–238. Springer, Cham (2016). doi:10.1007/978-3-319-32156-1_14 Google Scholar
  20. 20.
    Galatas, G., McMurrough, C., Mariottini, G.L., Makedon, F.: eyeDog: an assistive-guide robot for the visually impaired. In: Proceedings of the 4th International Conference on PErvasive Technologies Related to Assistive Environments (PETRA 2011). ACM, New York (2011) doi:10.1145/2141622.2141691
  21. 21.
    Keates, S., Adams, R., Bodine, C., Czaja, S., Gordon, W., Gregor, P., Hacker, E., Hanson, V., Kemp, J., Laff, M., Lewis, C., Pieper, M., Richards, J., Rose, D., Savidis, A., Schultz, G., Snayd, P., Trewin, S., Varker, P.: Cognitive and learning difficulties and how they affect access to IT systems. Int. J. Univ. Access Inf. Soc. 5(4), 329–339 (2007). doi:10.1007/s10209-006-0058-4. SpringerCrossRefGoogle Scholar
  22. 22.
    Robins, B., Dautenhahn, K., Te Boekhorst, R., Billard, A.: Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? Int. J. Univ. Access Inf. Soc. 4(2), 105–120 (2005). doi:10.1007/s10209-005-0116-3. SpringerCrossRefGoogle Scholar
  23. 23.
    Keates, S., Bradley, D., Sapeluk, A.: The future of universal access? Merging computing, design and engineering. In: Stephanidis, C., Antona, M. (eds.) UAHCI 2013. LNCS, vol. 8011, pp. 54–63. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39194-1_7 CrossRefGoogle Scholar
  24. 24.
    Keates, S., Varker, P., Spowart, F.: Human-machine design considerations in advanced machine-learning systems. IEEE/IBM J. Res. Dev. 55(5), 4:1–4:10 (2011). doi:10.1147/JRD.2011.2163274. IEEECrossRefGoogle Scholar
  25. 25.
    Hashimoto, T., Kobayashi, H., Polishuk, A., Verner, I.: Elementary science lesson delivered by robot. In: Proceedings of the 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI 2013), pp. 133–134. IEEE Press, Piscataway (2013)Google Scholar
  26. 26.
    Engineered Arts. RobotThespian. https://www.engineeredarts.co.uk/robothespian/

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of GreenwichKentUK

Personalised recommendations