Advertisement

Life Science Ontologies in Literature Retrieval: A Comparison of Linked Data Sets for Use in Semantic Search on a Heterogeneous Corpus

  • Bernd MüllerEmail author
  • Alexandra Hagelstein
  • Thomas Gübitz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10180)

Abstract

Ontologies are modeled using specific concepts of the knowledge domain as well as using generic concepts. Life science ontologies like MeSH, Agrovoc, and DrugBank are helpful for searching through large corpora. The distinct linkage to either the agricultural domain or the medical domain cannot be resolved for generic concepts that were created when modeling the domain. In information retrieval, it is required to filter knowledge resources for domain specific concepts in order to avoid noise in search results caused by generic concepts. Here, we present an exploratory step towards evaluating concept frequencies amongst different knowledge domains when employing ontologies in the retrieval on a large corpus.

Keywords

Life sciences Linked open data Named entity recognition Semantic search 

References

  1. 1.
    Bornmann, L., Mutz, R.: Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J. Assoc. Inf. Sci. Technol. 66, 2215–2222 (2015)CrossRefGoogle Scholar
  2. 2.
    Büttcher, S., Clarke, C.L.A., Cormack, G.V.: Information Retrieval: Implementing and Evaluating Search Engines. The MIT Press, Cambridge (2010)zbMATHGoogle Scholar
  3. 3.
    Caracciolo, C., Stellato, A., Morshed, A., Johannsen, G., Rajbhandari, S., Jaques, Y., Keizer, J.: The AGROVOC linked dataset. Semant. Web 4(3), 341–348 (2013)Google Scholar
  4. 4.
    Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., Tang, A., Gabriel, G., Ly, C., Adamjee, S., Dame, Z.T., Han, B., Zhou, Y., Wishart, D.S.: Drugbank 4.0: shedding new light on drug metabolism. Nucl. Acids Res. 42(Database issue), D1091–D1097 (2014)CrossRefGoogle Scholar
  5. 5.
    Müller, B., Hagelstein, A.: Beyond metadata enriching life science publications in livivo with semantic entities from the linked data cloud. In: Joint Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Systems - SEMANTiCS2016 and the 1st International Workshop on Semantic Change & Evolving Semantics (SuCCESS 2016), Co-located with the 12th International Conference on Semantic Systems (SEMANTiCS 2016), Leipzig, Germany (2016)Google Scholar
  6. 6.
    Rogers, F.B.: Medical subject headings. Bull. Med. Libr. Assoc. 51, 114–116 (1963)Google Scholar
  7. 7.
    Tanenblatt, M., Coden, A., Sominsky, I.: The conceptmapper approach to named entity recognition. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). European Language Resources Association (ELRA), Valletta, Malta (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bernd Müller
    • 1
    Email author
  • Alexandra Hagelstein
    • 1
  • Thomas Gübitz
    • 1
  1. 1.German National Library of MedicineZB MED - Information Centre for Life SciencesCologneGermany

Personalised recommendations