Recent Process in Probabilistic Tsunami Hazard Analysis (PTHA) for Mega Thrust Subduction Earthquakes

  • Nobuhito MoriEmail author
  • Katsuichiro Goda
  • Daniel Cox
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 47)


A review of the progress of Probabilistic Tsunami Hazard Analysis (PTHA) for mega thrust subduction earthquakes after the 2004 Indian Ocean tsunami is presented. PTHA is used to quantify the tsunami inundation characteristics probabilistically, analogous to Probabilistic Seismic Hazard Analysis (PSHA) popularized since the early 1970s. The process of PTHA is briefly presented from frequency-intensity modeling, geometric fault parameter modeling, and synthetic slip distribution modeling. There are mainly three different approaches, i.e. historical records, a logic tree and random phase, to generate different slip distributions in PTHA. PTHA is useful for risk assessment, when combined with fragility models for probabilistic damage assessment. Moreover, PTHA provides a consistent framework that allows it to be integrated with probabilistic seismic hazard analysis (PSHA) for multi-hazard damage assessment.


Tsunami hazard assessment Synthetic tsunami modeling Probabilistic modeling Inundation 



The authors appreciate for contributions to modeling and making examples by Professor P. Martin Mai (KAUST), Dr. Tomohiro Yasuda (Kansai University), Dr. Hyoungsu Park (Oregon State University), and Dr. Raffaele De Risi (University of Bristol).


  1. Anita G, Sandri L, Marzocchi W, Argnani A, Gasparini P, Selva J (2012) Probabilistic tsunami hazard assessment for Messina Strait Area (Sicily, Italy). Nat Hazards 64:329–358CrossRefGoogle Scholar
  2. Anita G, Tonini R, Sandri L, Pierdominici S, Selva J (2015) A methodology for a comprehensive probabilistic tsunami hazard assessment: multiple sources and short-term interactions. J Mar Sci Eng 3(1):23–51CrossRefGoogle Scholar
  3. Annaka T, Satake K, Sakakiyama T, Yanagisawa K, Shuto N (2007) Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. In: Tsunami and its hazards in the Indian and Pacific Oceans. Birkhäuser Basel, pp 577–592Google Scholar
  4. Blaser L, Krüger F, Ohrnberger M, Scherbaum F (2010) Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull Seismol Soc Am 100(6):2914–2926CrossRefGoogle Scholar
  5. Burbidge D, Cummins P R, Mleczko R, Thio HK (2008) A probabilistic tsunami hazard assessment for Western Australia. In: Tsunami science four years after the 2004 Indian Ocean Tsunami, Birkhäuser Basel, pp 2059–2088Google Scholar
  6. Burbidge D, Mueller C, Power W (2015) The effect of uncertainty in earthquake fault parameters on the maximum wave height from a tsunami propagation model. Nat Hazards Earth Syst Sci 15(10):2299Google Scholar
  7. Burroughs SM, Tebbens SF (2005) Power-law scaling and probabilistic forecasting of tsunami runup height. Pure Appl Geophys 162:331–342CrossRefGoogle Scholar
  8. Chock GY (2016) Design for tsunami loads and effects in the ASCE 7-16 standard. J Struct Eng, 04016093Google Scholar
  9. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606Google Scholar
  10. Davies G, Horspool N, Miller V (2015) Tsunami inundation from heterogeneous earthquake slip distributions: evaluation of synthetic source models. J Geophys Res Solid Earth 120(9):6431–6451CrossRefGoogle Scholar
  11. De Risi R, Goda K (2016) Probabilistic earthquake-tsunami multi-hazard analysis: application to the Tohoku region, Japan. Front Built Environ, 2(25). Doi: 10.3389/fbuil.2016.00025
  12. Fukutani Y, Suppasri A, Imamura F (2015) Stochastic analysis and uncertainty assessment of tsunami wave height using a random source parameter model that targets a Tohoku-type earthquake fault. Stoch Env Res Risk A 29(7):1763–1779CrossRefGoogle Scholar
  13. Geist EL (2002) Complex earthquake rupture and local tsunamis. J Geophys Res Solid Earth 107(B5)Google Scholar
  14. Geist EL, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314CrossRefGoogle Scholar
  15. Grezio A, Marzocchi W, Sandri L, Gasparini P (2010) A Bayesian procedure for probabilistic tsunami hazard assessment. Nat Hazards 53(1):159–174CrossRefGoogle Scholar
  16. Goda K, Mai PM, Yasuda T, Mori N (2014) Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth Planets Space 66(1):1–20CrossRefGoogle Scholar
  17. Goda K, Song J (2016) Uncertainty modeling and visualization for tsunami hazard and risk mapping: a case study for the 2011 Tohoku earthquake. Stoch Env Res Risk A 30(8):2271–2285Google Scholar
  18. Goda K, Yasuda T, Mori N, Mai PM (2015) Variability of tsunami inundation footprints considering stochastic scenarios based on a single rupture model: application to the 2011 Tohoku earthquake. J Geophys Res Oceans 120(6):4552–4575CrossRefGoogle Scholar
  19. Goda K, Yasuda T, Mori N, Maruyama T (2016) New scaling relationships of earthquake source parameters for stochastic tsunami simulation. Coast Eng J 58(3):1650010. doi: 10.1142/S0578563416500108 CrossRefGoogle Scholar
  20. González FI, Geist EL, Jaffe B, Kânoğlu U, Mofjeld H, Synolakis C E, Horning T (2009) Probabilistic tsunami hazard assessment at seaside, Oregon, for near-and far-field seismic sources. J Geophys Res: Oceans, 114(C11)Google Scholar
  21. Grilli ST, Taylor ODS, Baxter CD, Maretzki S (2009) A probabilistic approach for determining submarine landslide tsunami hazard along the upper east coast of the United States. Mar Geol 264(1):74–97CrossRefGoogle Scholar
  22. Heidarzadeh M, Kijko A (2011) A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Nat Hazards 56(3):577–593. doi: 10.1007/s11069-010-9574-x CrossRefGoogle Scholar
  23. Horspool N, Pranantyo I, Griffin J, Latief H, Natawidjaja DH, Kongko W, Cipta A, Bustaman B, Anugrah SD, Thio HK (2014) A probabilistic tsunami hazard assessment for Indonesia. Nat Hazards Earth Syst Sci 14(11):3105–3122CrossRefGoogle Scholar
  24. Kagan Y, Jackson DD (2013) Tohoku earthquake: a surprise? Bull Seismol Soc Am 103:1181–1194CrossRefGoogle Scholar
  25. Leonard M (2010) Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bull Seismol Soc Am 100(5A):1971–1988CrossRefGoogle Scholar
  26. Leonard LJ, Rogers GC, Mazzotti S (2014) Tsunami hazard assessment of Canada. Nat Hazards 70(1):237–274CrossRefGoogle Scholar
  27. Li H, Yuan Y, Xu Z, Wang Z, Wang J, Wang P, Gao Y, Hou J, Shan D (2016) The dependency of probabilistic tsunami hazard assessment on magnitude limits of seismic sources in the South China Sea and adjoining basins. Pur Appl Geophys, 1–20Google Scholar
  28. Liu Y, Santos A, Wang SM, Shi Y, Liu H, Yuen DA (2007) Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Phys Earth Planet Inter 163(1):233–244CrossRefGoogle Scholar
  29. Lorito S, Selva J, Basili R, Romano F, Tiberti MM, Piatanesi A (2015) Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps. Geophys J Int 200(1):574–588CrossRefGoogle Scholar
  30. Løvholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P et al (2012) Tsunami hazard and exposure on the global scale. Earth Sci Rev 110(1):58–73Google Scholar
  31. Mai PM, Beroza GC (2000) Source scaling properties from finite-fault-rupture models. Bull Seismol Soc Am 90(3):604–615CrossRefGoogle Scholar
  32. Mai PM, Thingbaijam KKS (2014) SRCMOD: an online database of finite-fault rupture models. Seismol Res Lett 85(6):1348–1357CrossRefGoogle Scholar
  33. McCloskey J, Antonioli A, Piatanesi A, Sieh K, Steacy S, Nalbant S, Dunlop P (2008) Tsunami threat in the Indian Ocean from a future megathrust earthquake west of Sumatra. Earth Planet Sci Lett 265(1):61–81CrossRefGoogle Scholar
  34. McGuire RK (2008) Probabilistic seismic hazard analysis: early history. Earthq Eng Struct Dyn 37(3):329–338CrossRefGoogle Scholar
  35. Mori N, Takahashi K (2012) Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami. Coast Eng J 54(01):1250001Google Scholar
  36. Mori N, T, Yasuda T, Yanagisawa H (2011) Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys Res Lett, 38(7). Doi: 10.1029/2011GL049210
  37. Mori N, Cox DT, Yasuda T, Mase H (2013) Overview of the 2011 Tohoku earthquake tsunami damage and its relation to coastal protection along the Sanriku Coast. Earthquake Spectra 29(S1):S127–S143CrossRefGoogle Scholar
  38. Mori N, Mai PM, Goda K, Yasuda T (2016) Tsunami inundation variability from stochastic rupture scenarios: application to the 2011 Tohoku, Japan earthquake multiple inversions. Submitted to Coastal EngineeringGoogle Scholar
  39. Mueller C, Power W, Fraser S, Wang X (2015) Effects of rupture complexity on local tsunami inundation: Implications for probabilistic tsunami hazard assessment by example. J Geophys Res Solid Earth 120(1):488–502Google Scholar
  40. Murotani S, Satake K, Fujii Y (2013) Scaling relations of seismic moment, rupture area, average slip, and asperity size for M9 subduction-zone earthquakes. Geophys Res Lett 40(19):5070–5074CrossRefGoogle Scholar
  41. Orfanogiannaki K, Papadopoulos GA (2007) Conditional probability approach of the assessment of tsunami potential: application in three tsunamigenic regions of the Pacific Ocean. Pure Appl Geophys 164(2–3):593–603CrossRefGoogle Scholar
  42. Papazachos BC, Scordilis EM, Panagiotopoulos DG, Papazachos CB, Karakaisis GF (2004) Global relations between seismic fault parameters and moment magnitude of earthquakes. Bull Geol Soc Greece 36:1482–1489Google Scholar
  43. Park H, Cox DT (2016) Probabilistic assessment of near-field tsunami hazards: inundation depth, velocity, momentum flux, arrival time, and duration applied to Seaside, Oregon. Coast Eng 117:79–96CrossRefGoogle Scholar
  44. Parsons T, Geist E (2009) Tsunami Probability in a Caribbean Region. Pure Appl Geophys 165:2089–2116. doi: 10.1007/s00024-008-0416-7 CrossRefGoogle Scholar
  45. Priest GR, Goldfinger C, Wang K, Witter RC, Zhang Y, Baptista AM (2010) Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone. Nat Hazards 54:27–73. doi: 10.1007/s11069-009-9453-5 CrossRefGoogle Scholar
  46. Power W, Downes G, Stirling M (2007) Estimation of tsunami hazard in New Zealand due to South American Earthquakes. Pure Appl Geophys 164:547–564CrossRefGoogle Scholar
  47. Power W, Wang X, Lane E, Gillibrand P (2013) A probabilistic tsunami hazard study of the Auckland region, part I: propagation modelling and tsunami hazard assessment at the shoreline. Pure Appl Geophys 170(9–10):1621–1634CrossRefGoogle Scholar
  48. Rikitake T, Aida I (1988) Tsunami hazard probability in Japan. Bull Seismol Soc Jpn 78(3):1268–1278Google Scholar
  49. Sørensen MB, Spada M, Babeyko A, Wiemer S, Grünthal G (2012) Probabilistic tsunami hazard in the Mediterranean Sea. J Geophys Res: Solid Earth, 117(B1)Google Scholar
  50. Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett 81(6):941–950CrossRefGoogle Scholar
  51. Somerville P, Irikura K, Graves R, Sawada S, Wald D, Abrahamson N et al (1999) Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismol Res Lett 70(1):59–80Google Scholar
  52. The 2011 Tohoku Earthquake Tsunami Joint Survey Group (2011) Nationwide field survey of the 2011 off the Pacific coast of Tohoku Earthquake Tsunami. J Jpn Soc Civil Eng, Series B-2, 67(1):63–66Google Scholar
  53. Tinti S, Armigliato A, Tonini R, Maramai A, Graziani L (2005) Assessing the hazard related to tsunamis of tectonic origin: a hybrid statistical-deterministic method applied to southern Italy coasts. ISET J Earthq Technol 42(4):189–201Google Scholar
  54. Thio, H. K., & Somerville, P. (2009). A probabilistic tsunami hazard analysis of California. In TCLEE 2009: lifeline earthquake engineering in a multihazard environment, ASCE. pp 1–12Google Scholar
  55. Thio HK, Somerville P, Ichinose G (2007) Probabilistic analysis of strong ground motion and tsunami hazards in Southeast Asia. J Earthq Tsunami 1(02):119–137CrossRefGoogle Scholar
  56. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002Google Scholar
  57. Wiebe DM, Cox DT (2014) Application of fragility curves to estimate building damage and economic loss at a community scale: a case study of Seaside, Oregon. Nat Hazards 71(3):2043–2061CrossRefGoogle Scholar
  58. Witter RC, Zhang YJ, Wang K, Priest GR, Goldfinger C, Stimely L, English JT, Ferro PA (2013) Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere 9(6):1783–1803CrossRefGoogle Scholar
  59. Yanagisawa K, Imamura F, Sakakiyama T, Annaka T, Takeda T, Shuto N (2007) Tsunami assessment for risk management at nuclear power facilities in Japan. Pure Appl Geophys 164(2–3):565–576CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Disaster Prevention Research InstituteKyoto UniversityKyotoJapan
  2. 2.Civil EngineeringUniversity of BristolBristolUK
  3. 3.Civil and Construction EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations