Skip to main content

Tile Low Rank Cholesky Factorization for Climate/Weather Modeling Applications on Manycore Architectures

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10266))

Abstract

Covariance matrices are ubiquitous in computational science and engineering. In particular, large covariance matrices arise from multivariate spatial data sets, for instance, in climate/weather modeling applications to improve prediction using statistical methods and spatial data. One of the most time-consuming computational steps consists in calculating the Cholesky factorization of the symmetric, positive-definite covariance matrix problem. The structure of such covariance matrices is also often data-sparse, in other words, effectively of low rank, though formally dense. While not typically globally of low rank, covariance matrices in which correlation decays with distance are nearly always hierarchically of low rank. While symmetry and positive definiteness should be, and nearly always are, exploited for performance purposes, exploiting low rank character in this context is very recent, and will be a key to solving these challenging problems at large-scale dimensions. The authors design a new and flexible tile row rank Cholesky factorization and propose a high performance implementation using OpenMP task-based programming model on various leading-edge manycore architectures. Performance comparisons and memory footprint saving on up to \(200K\times 200K\) covariance matrix size show a gain of more than an order of magnitude for both metrics, against state-of-the-art open-source and vendor optimized numerical libraries, while preserving the numerical accuracy fidelity of the original model. This research represents an important milestone in enabling large-scale simulations for covariance-based scientific applications.

This is a preview of subscription content, log in via an institution.

References

  1. The R Project for Statistical Computing (2016). r-project.org

  2. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the PLASMA and MAGMA projects. J. Phys: Conf. Ser. 180, 012037 (2009)

    Google Scholar 

  3. Ambikasaran, S., Darve, E.: An \(\cal{O}({N} \log {N})\) fast direct solver for partial hierarchically semiseparable matrices. J. Sci. Comput. 57(3), 477–501 (2013)

    Article  MathSciNet  Google Scholar 

  4. Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.Y., Weisbecker, C.: Improving multifrontal methods by means of block low-rank representations. SIAM J. Sci. Comput. 37(3), A1451–A1474 (2015)

    Article  MathSciNet  Google Scholar 

  5. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2), 501–520 (2000)

    Article  Google Scholar 

  6. Aminfar, A., Darve, E.: A fast sparse solver for finite-element matrices. arXiv:1403.5337 [cs.NA], pp. 1–25 (2014)

  7. Anderson, E., Bai, Z., Bischof, C.H., Blackford, L.S., Demmel, J.W., Dongarra, J.J., Croz, J.J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.C.: LAPACK User’s Guide, 3rd edn. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  8. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified platform for task scheduling on heterogeneous multicore architectures. Concurr. Comput.: Pract. Exp. 23(2), 187–198 (2011)

    Article  Google Scholar 

  9. Börm, S.: H2Lib 2.0. Max-Planck-Institut, Leipzig (1999–2012)

    Google Scholar 

  10. Börm, S.: Efficient numerical methods for non-local operators: \(\cal{H}^2\)-Matrix compression, algorithms and analysis. EMS Tracts in Mathematics, vol. 14. European Mathematical Society, Zürich (2010)

    Book  Google Scholar 

  11. Duputel, Z., Rivera, L., Fukahata, Y., Kanamori, H.: Uncertainty estimations for seismic source inversions. Int. Geophys. J. 190(2), 1243–1256 (2012)

    Article  Google Scholar 

  12. Duran, A., Ferrer, R., Ayguadé, E., Badia, R.M., Labarta, J.: A proposal to extend the OpenMP tasking model with dependent tasks. Int. J. Parallel Prog. 37(3), 292–305 (2009)

    Article  Google Scholar 

  13. The FLAME project, April 2010. http://z.cs.utexas.edu/wiki/flame.wiki/FrontPage

  14. Hackbusch, W.: A sparse matrix arithmetic based on \(\cal{H}\)-matrices. Part i: introduction to \(\cal{H}\)-matrices. Computing 62(2), 89–108 (1999)

    Article  MathSciNet  Google Scholar 

  15. Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive \({\cal{H}}^2\)-matrices. Computing 69(1), 1–35 (2002)

    Article  MathSciNet  Google Scholar 

  16. Hackbusch, W., Khoromskij, B., Sauter, S.: On \(\cal{H}^{2}\)-Matrices. In: Bungartz, H.J., Hoppe, R., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis, vol. 49. Springer, Heidelberg (2015)

    Book  Google Scholar 

  18. Hackbusch, W., Börm, S., Grasedyck, L.: HLib 1.4. Max-Planck-Institut, Leipzig (1999–2012)

    Google Scholar 

  19. Intel: Math Kernel Library (2016). software.intel.com/en-us/intel-mkl

  20. Kriemann, R.: \(\cal{H}\)-LU factorization on many-core systems. Comput. Vis. Sci. 16(3), 105–117 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ltaief, H., Gratadour, D., Charara, A., Gendron, E.: Adaptive optics simulation for the world’s largest telescope on multicore architectures with multiple GPUs. In: Proceedings of the Platform for Advanced Scientific Computing Conference, PASC 2016. pp. 9:1–9:12. ACM, New York (2016)

    Google Scholar 

  22. Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: The Top500 List, November 2016. http://www.top500.org

  23. Rouet, F.H., Li, X.S., Ghysels, P., Napov, A.: A distributed-memory package for dense hierarchically semi-separable matrix computations using randomization. ACM Trans. Math. Softw. 42(4), 27:1–27:35 (2016)

    Article  MathSciNet  Google Scholar 

  24. Sun, Y., Stein, M.L.: Statistically and computationally efficient estimating equations for large spatial datasets. J. Comput. Graph. Stat. 25(1), 187–208 (2016)

    Article  MathSciNet  Google Scholar 

  25. Tyrtyshnikov, E.E.: Mosaic-skeleton approximations. Calcolo 33(1), 47–57 (1996)

    Article  MathSciNet  Google Scholar 

  26. YarKhan, A., Kurzak, J., Dongarra, J.: QUARK users’ guide: QUeueing and runtime for kernels. Technical report ICL-UT-11-02, University of Tennessee Innovative Computing Laboratory (2011)

    Google Scholar 

  27. YarKhan, A., Kurzak, J., Luszczek, P., Dongarra, J.: Porting the PLASMA numerical library to the OpenMP standard. Int. J. Parallel Program. 45(3), 612–633 (2017). doi:10.1007/s10766-016-0441-6

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank R. Kriemann from Max Planck Institute for Mathematics in the Sciences and M. Genton, A. Litvinenko, Y. Sun, and G. Turkiyyah from KAUST for fruitful discussions. We would like also to thank A. Heinecke from Intel for helping us tuning the codes on KNL. This work has been partially funded by the Intel Parallel Computing Center Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Ltaief .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Akbudak, K., Ltaief, H., Mikhalev, A., Keyes, D. (2017). Tile Low Rank Cholesky Factorization for Climate/Weather Modeling Applications on Manycore Architectures. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds) High Performance Computing. ISC High Performance 2017. Lecture Notes in Computer Science(), vol 10266. Springer, Cham. https://doi.org/10.1007/978-3-319-58667-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58667-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58666-3

  • Online ISBN: 978-3-319-58667-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics