An Analysis of Core- and Chip-Level Architectural Features in Four Generations of Intel Server Processors

  • Johannes Hofmann
  • Georg Hager
  • Gerhard Wellein
  • Dietmar Fey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10266)

Abstract

This paper presents a survey of architectural features among four generations of Intel server processors (Sandy Bridge, Ivy Bridge, Haswell, and Broadwell) with a focus on performance with floating point workloads. Starting at the core level and going down the memory hierarchy we cover instruction throughput for floating-point instructions, L1 cache, address generation capabilities, core clock speed and its limitations, L2 and L3 cache bandwidth and latency, the impact of Cluster on Die (CoD) and cache snoop modes, and the Uncore clock speed. Using microbenchmarks we study the influence of these factors on code performance. We show that the energy efficiency of the LINPACK and HPCG benchmarks can be improved significantly by tuning the Uncore clock speed without sacrificing performance, and that the Graph500 benchmark performance may benefit from a suitable choice of cache snoop mode settings.

Keywords

Intel architecture Performance modeling LINPACK HPCG Graph500 

References

  1. 1.
    Barker, K., Davis, K., Hoisie, A., Kerbyson, D.J., Lang, M., Pakin, S., Sancho, J.C.: A performance evaluation of the Nehalem quad-core processor for scientific computing. Parallel Proces. Lett. 18(4), 453–469 (2008). http://dx.doi.org/10.1142/S012962640800351X MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gasc, T., Vuyst, F.D., Peybernes, M., Poncet, R., Motte, R.: Building a more efficient Lagrange-remap scheme thanks to performance modeling. In: Papadrakakis, M., et al. (ed.) Proceedings of the ECCOMAS Congress 2016, the VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece, 5–10 June 2016. https://www.eccomas2016.org/proceedings/pdf/12210.pdf
  3. 3.
    Hackenberg, D., Oldenburg, R., Molka, D., Schöne, R.: Introducing FIRESTARTER: a processor stress test utility. In: 2013 International Green Computing Conference Proceedings. pp. 1–9, June 2013Google Scholar
  4. 4.
    Hackenberg, D., Schöne, R., Ilsche, T., Molka, D., Schuchart, J., Geyer, R.: An energy efficiency feature survey of the Intel Haswell processor. In: 2015 IEEE International Parallel and Distributed Processing Symposium Workshop, pp. 896–904, May 2015Google Scholar
  5. 5.
    Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and power properties of modern multicore chips via simple machine models. Concurr. Computat.: Pract. Exper. (2013). doi:10.1002/cpe.3180
  6. 6.
    Hockney, R.W., Curington, I.J.: \(f_{1/2}\): a parameter to characterize memory and communication bottlenecks. Parallel Comput. 10(3), 277–286 (1989)CrossRefMATHGoogle Scholar
  7. 7.
    Hofmann, J., Fey, D.: An ECM-based energy-efficiency optimization approach for bandwidth-limited streaming kernels on recent Intel Xeon processors. In: Proceedings of the 4th International Workshop on Energy Efficient Supercomputing, E2SC 2016, pp. 31–38. IEEE Press, Piscataway (2016). https://doi.org/10.1109/E2SC.2016.16
  8. 8.
    Hofmann, J., Fey, D., Eitzinger, J., Hager, G., Wellein, G.: Analysis of Intel’s Haswell microarchitecture using the ECM model and microbenchmarks. In: Hannig, F., Cardoso, J.M.P., Pionteck, T., Fey, D., Schröder-Preikschat, W., Teich, J. (eds.) ARCS 2016. LNCS, vol. 9637, pp. 210–222. Springer, Cham (2016). doi:10.1007/978-3-319-30695-7_16 CrossRefGoogle Scholar
  9. 9.
    Hofmann, J., Fey, D., Riedmann, M., Eitzinger, J., Hager, G., Wellein, G.: Performance analysis of the Kahan-enhanced scalar product on current multi-core and many-core processors. Concurr. Comput.: Pract. Exp. (2016). http://dx.doi.org/10.1002/cpe.3921
  10. 10.
    Hofmann, J., Treibig, J., Hager, G., Wellein, G.: Comparing the performance of different x86 SIMD instruction sets for a medical imaging application on modern multi- and manycore chips. In: Proceedings of the 2014 Workshop on Programming Models for SIMD/Vector Processing, WPMVP 2014, pp. 57–64. ACM, New York (2014). http://doi.acm.org/10.1145/2568058.2568068
  11. 11.
    Intel Corporation: Intel Xeon Processor E5-1600, E5-2400, and E5-2600 v3 Product Families - volume 2 of 2, Registers. http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v3-datasheet-vol-2.pdf
  12. 12.
  13. 13.
    McCalpin, J.D.: Memory bandwidth and machine balance in current high performance computers. IEEE Comput. Soc. Tech. Comm. Comput. Archit. (TCCA) Newsl. 19, 19–25 (1995)Google Scholar
  14. 14.
    Microway Inc.: Detailed specifications of the Intel Xeon E5-2600 v4 Broadwell-EP processorsGoogle Scholar
  15. 15.
    Molka, D., Hackenberg, D., Schöne, R., Nagel, W.E.: Cache coherence protocol and memory performance of the Intel Haswell-EP architecture. In: Proceedings of the 44th International Conference on Parallel Processing (ICPP 2015). IEEE (2015)Google Scholar
  16. 16.
    Kottapalli, S., Geetha, V., Neefs, H.G., Choi, Y.: Patent US20130007376 A1: Opportunistic Snoop Broadcast (OSB) in directory enabled home snoopy systems. http://www.google.com/patents/US20130007376
  17. 17.
    Schöne, R., Treibig, J., Dolz, M.F., Guillen, C., Navarrete, C., Knobloch, M., Rountree, B.: Tools and methods for measuring and tuning the energy efficiency of HPC systems. Sci. Program. 22(4), 273–283 (2014). http://dx.doi.org/10.3233/SPR-140393 Google Scholar
  18. 18.
    Stengel, H., Treibig, J., Hager, G., Wellein, G.: Quantifying performance bottlenecks of stencil computations using the Execution-Cache-Memory model. In: Proceedings of the 29th ACM International Conference on Supercomputing, ICS 2015. ACM, New York (2015). http://doi.acm.org/10.1145/2751205.2751240
  19. 19.
    Treibig, J., Hager, G., Hofmann, H.G., Hornegger, J., Wellein, G.: Pushing the limits for medical image reconstruction on recent standard multicore processors. Int. J. High Perform. Comput. Appl. 27(2), 162–177 (2013). http://dx.doi.org/10.1177/1094342012442424 CrossRefGoogle Scholar
  20. 20.
    Treibig, J., Hager, G., Wellein, G.: likwid-bench: an extensible microbenchmarking platform for x86 multicore compute nodes. In: Brunst, H., Müller, M., Nagel, W., Resch, M. (eds.) Tools for High Performance Computing, pp. 27–36. Springer, Heidelberg (2011)Google Scholar
  21. 21.
    Wilde, T., Auweter, A., Shoukourian, H., Bode, A.: Taking advantage of node power variation in homogenous HPC systems to save energy. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Performance 2015. LNCS, vol. 9137, pp. 376–393. Springer, Cham (2015). doi:10.1007/978-3-319-20119-1_27 CrossRefGoogle Scholar
  22. 22.
    Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009). http://doi.acm.org/10.1145/1498765.1498785 CrossRefGoogle Scholar
  23. 23.
    Wittmann, M., Hager, G., Zeiser, T., Treibig, J., Wellein, G.: Chip-level and multi-node analysis of energy-optimized lattice Boltzmann CFD simulations. Concurr. Comput.: Pract. Exp. 28(7), 2295–2315 (2016). http://dx.doi.org/10.1002/cpe.3489 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Johannes Hofmann
    • 1
  • Georg Hager
    • 2
  • Gerhard Wellein
    • 2
  • Dietmar Fey
    • 1
  1. 1.Computer ArchitectureUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Erlangen Regional Computing Center (RRZE)ErlangenGermany

Personalised recommendations