Fully Resolved Simulations of Dune Formation in Riverbeds

  • Christoph RettingerEmail author
  • Christian Godenschwager
  • Sebastian Eibl
  • Tobias Preclik
  • Tobias Schruff
  • Roy Frings
  • Ulrich Rüde
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10266)


The formation and dynamics of dunes is an important phenomenon that occurs in many environmental systems, such as riverbeds. The physical interactions are complex and thus evaluating and quantifying the factors of influence is challenging. Simulation models can be used to conduct large scale parameter studies and allow a more detailed analysis of the system than laboratory experiments. Here, we present new coupled numerical models for sediment transport that are based on first principles. The lattice Boltzmann method is used in combination with a non-smooth granular dynamics model to simulate the fluid flow and the sediment particles. Numerical predictions of dune formation require a fully resolved modeling of the particulate flow which is only achieved by massively parallel simulations. For that purpose, the method employs advanced parallel grid refinement techniques and carefully designed compute kernels. The weak- and strong-scaling behavior is evaluated in detail and shows overall excellent parallel performance and efficiency.


High performance computing Computational fluid dynamics Particulate flow Fluid structure interaction Dune formation Lattice Boltzmann method Granular dynamics Grid refinement 



The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. ( for funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ,


  1. 1.
    Aidun, C.K., Lu, Y., Ding, E.J.: Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287–311 (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ammer, R., Markl, M., Ljungblad, U., Körner, C., Rüde, U.: Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method. Comput. Math. Appl. 67(2), 318–330 (2014). doi: 10.1016/j.camwa.2013.10.001 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andreotti, B., Claudin, P., Douady, S.: Selection of dune shapes and velocities part 1: dynamics of sand, wind and barchans. Eur. Phy. J. B-Condens. Matter Complex Syst. 28(3), 321–339 (2002). doi: 10.1140/epjb/e2002-00236-4 CrossRefGoogle Scholar
  4. 4.
    Bartuschat, D., Rüde, U.: Parallel multiphysics simulations of charged particles in microfluidic flows. J. Comput. Sci. 8, 1–19 (2015). doi: 10.1016/j.jocs.2015.02.006 CrossRefGoogle Scholar
  5. 5.
    Bauer, M., Hötzer, J., Jainta, M., Steinmetz, P., Berghoff, M., Schornbaum, F., Godenschwager, C., Köstler, H., Nestler, B., Rüde, U.: Massively parallel phase-field simulations for ternary eutectic directional solidification. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2015, pp. 8:1–8:12. ACM, New York (2015). doi: 10.1145/2807591.2807662
  6. 6.
    Best, J.: The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res.: Earth Surface 110(F4) (2005). doi: 10.1029/2004JF000218
  7. 7.
    Buffington, J.M., Montgomery, D.R.: A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 33(8), 1993–2029 (1997). doi: 10.1029/96WR03190 CrossRefGoogle Scholar
  8. 8.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998). doi: 10.1146/annurev.fluid.30.1.329 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Doucette, J.S.: Geometry and grain-size sorting of ripples on low-energy sandy beaches: field observations and model predictions. Sedimentology 49(3), 483–503 (2002). doi: 10.1046/j.1365-3091.2002.00456.x CrossRefGoogle Scholar
  10. 10.
    Dullien, F.A.: Porous Media: Fluid Transport and Pore Structure. Academic Press, Cambridge (2012)Google Scholar
  11. 11.
    Fattahi, E., Waluga, C., Wohlmuth, B., Rüde, U.: Large scale lattice Boltzmann simulation for the coupling of free and porous media flow. In: Kozubek, T., Blaheta, R., Šístek, J., Rozložník, M., Čermák, M. (eds.) HPCSE 2015. LNCS, vol. 9611, pp. 1–18. Springer, Cham (2016). doi: 10.1007/978-3-319-40361-8_1 CrossRefGoogle Scholar
  12. 12.
    Fattahi, E., Waluga, C., Wohlmuth, B., Rüde, U., Manhart, M., Helmig, R.: Lattice Boltzmann methods in porous media simulations: from laminar to turbulent flow. Comput. Fluids 140, 247–259 (2016). doi: 10.1016/j.compfluid.2016.10.007 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ferguson, R., Hoey, T., Wathen, S., Werritty, A.: Field evidence for rapid downstream fining of river gravels through selective transport. Geology 24(2), 179–182 (1996)CrossRefGoogle Scholar
  14. 14.
    Flemming, B.W.: Underwater sand dunes along the southeast African continental margin — Observations and implications. Marine Geol. 26(3–4), 177–198 (1978). doi: 10.1016/0025-3227(78)90059-2 CrossRefGoogle Scholar
  15. 15.
    Frings, R.M.: Downstream fining in large sand-bed rivers. Earth-Sci. Rev. 87(1–2), 39–60 (2008). doi: 10.1016/j.earscirev.2007.10.001 CrossRefGoogle Scholar
  16. 16.
    Frings, R.M., Kleinhans, M.G.: Complex variations in sediment transport at three large river bifurcations during discharge waves in the River Rhine. Sedimentology 55(5), 1145–1171 (2008). doi: 10.1111/j.1365-3091.2007.00940.x CrossRefGoogle Scholar
  17. 17.
    Ginzburg, I., Verhaeghe, F., d’Humieres, D.: Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3(2), 427–478 (2008)MathSciNetGoogle Scholar
  18. 18.
    Godenschwager, C., Schornbaum, F., Bauer, M., Köstler, H., Rüde, U.: A framework for hybrid parallel flow simulations with a trillion cells in complex geometries. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2013, pp. 35:1–35:12. ACM, New York (2013). doi: 10.1145/2503210.2503273
  19. 19.
    Götz, J., Iglberger, K., Feichtinger, C., Donath, S., Rüde, U.: Coupling multibody dynamics and computational fluid dynamics on 8192 processor cores. Parallel Comput. 36(2), 142–151 (2010). doi: 10.1016/j.parco.2010.01.005 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Götz, J., Iglberger, K., Stürmer, M., Rüde, U.: Direct numerical simulation of particulate flows on 294912 processor cores. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE Computer Society (2010). doi: 10.1109/SC.2010.20
  21. 21.
    Jackson, D., Bourke, M., Smyth, T.: The dune effect on sand-transporting winds on Mars. Nat. Commun. 6 (2015). doi: 10.1038/ncomms9796
  22. 22.
    Hasert, M., Masilamani, K., Zimny, S., Klimach, H., Qi, J., Bernsdorf, J., Roller, S.: Complex fluid simulations with the parallel tree-based Lattice Boltzmann solver Musubi. J. Comput. Sci. 5(5), 784–794 (2014). doi: 10.1016/j.jocs.2013.11.001 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Iglberger, K., Rüde, U.: Massively parallel granular flow simulations with non-spherical particles. Comput. Sci.-Res. Dev. 25(1–2), 105–113 (2010). doi: 10.1007/s00450-010-0114-4 CrossRefGoogle Scholar
  24. 24.
    Julien, P.Y., Klaassen, G.J.: Sand-dune geometry of large rivers during floods. J. Hydraul. Eng. 121(9), 657–663 (1995). doi: 10.1061/(ASCE)0733-9429(1995)121:9(657) CrossRefGoogle Scholar
  25. 25.
    Kennedy, J.F.: The mechanics of dunes and antidunes in erodible-bed channels. J. Fluid Mech. 16(04), 521–544 (2006). doi: 10.1017/S0022112063000975 CrossRefzbMATHGoogle Scholar
  26. 26.
    Kidanemariam, A.G., Uhlmann, M.: Direct numerical simulation of pattern formation in subaqueous sediment. J. Fluid Mech. 750 (2014). doi: 10.1017/jfm.2014.284
  27. 27.
    Kidanemariam, A.G., Uhlmann, M.: Interface-resolved direct numerical simulation of the erosion of a sediment bed sheared by laminar channel flow. Int. J. Multiph. Flow 67, 174–188 (2014). doi: 10.1016/j.ijmultiphaseflow.2014.08.008 CrossRefGoogle Scholar
  28. 28.
    Kostaschuk, R.: Sediment transport mechanics and subaqueous dune morphology. In: River, Coastal and Estuarine Morphodynamics. Taylor & Francis (2010)Google Scholar
  29. 29.
    Kuron, M., Rempfer, G., Schornbaum, F., Bauer, M., Godenschwager, C., Holm, C., de Graaf, J.: Moving charged particles in lattice Boltzmann-based electrokinetics. J. Chem. Phys. 145(21), 214102 (2016). doi: 10.1063/1.4968596 CrossRefGoogle Scholar
  30. 30.
    Ladd, A.J.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309 (1994). doi: 10.1017/S0022112094001771 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ladd, A.J.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339 (1994). doi: 10.1017/S0022112094001783 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lancaster, N.: Planetary science. Linear dunes on titan. Science 312(5774), 702–703 (2006). doi: 10.1126/science.1126292 CrossRefGoogle Scholar
  33. 33.
    Li, M.Z., Amos, C.L.: Sheet flow and large wave ripples under combined waves and currents: field observations, model predictions and effects on boundary layer dynamics. Cont. Shelf Res. 19(5), 637–663 (1999). doi: 10.1016/S0278-4343(98)00094-6 CrossRefGoogle Scholar
  34. 34.
    Luo, L.S.: Unified theory of lattice Boltzmann models for nonideal gases. Phys. Rev. Lett. 81(8), 1618 (1998). doi: 10.1103/PhysRevLett.81.1618 CrossRefGoogle Scholar
  35. 35.
    Mitarai, N., Nakanishi, H.: Granular flow: dry and wet. Eur. Phys. J. Spec. Top. 204(1), 5–17 (2012). doi: 10.1140/epjst/e2012-01548-8 CrossRefGoogle Scholar
  36. 36.
    Parker, G.: Surface-based bedload transport relation for gravel rivers. J. Hydraul. Res. 28(4), 417–436 (1990). doi: 10.1080/00221689009499058 CrossRefGoogle Scholar
  37. 37.
    Preclik, T.: Models and algorithms for ultrascale simulations of non-smooth granular dynamics. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2014)Google Scholar
  38. 38.
    Preclik, T., Rüde, U.: Ultrascale simulations of non-smooth granular dynamics. Comput. Part. Mech. 2(2), 173–196 (2015). doi: 10.1007/s40571-015-0047-6 CrossRefGoogle Scholar
  39. 39.
    Qian, Y.H., D’Humires, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. EPL (Europhys. Lett.) 17(6), 479 (1992)CrossRefzbMATHGoogle Scholar
  40. 40.
    Rettinger, C., Rüde, U.: Simulations of particle-laden flows with the Lattice Boltzmann method. PAMM 16(1), 607–608 (2016). doi: 10.1002/pamm.201610292 CrossRefGoogle Scholar
  41. 41.
    van Rijn, L.C.: Sediment transport, part III: bed forms and Alluvial Roughness. J. Hydraul. Eng. 110(12), 1733–1754 (1984). doi: 10.1061/(ASCE)0733-9429(1984)110:12(1733) CrossRefGoogle Scholar
  42. 42.
    Schornbaum, F., Rüde, U.: Massively parallel algorithms for the lattice Boltzmann method on nonuniform grids. SIAM J. Sci. Comput. 38(2), C96–C126 (2016). doi: 10.1137/15M1035240 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Studer, C.: Numerics of Unilateral Contacts and Friction: Modeling and Numerical Time Integration in Non-smooth Dynamics. Lecture Notes in Applied and Computational Mechanics, vol. 47. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  44. 44.
    Toyama, A., Shimizu, Y., Yamaguchi, S., Giri, S.: Study of sediment transport rate over dune-covered beds. In: River, Coastal and Estuarine Morphodynamics: RCEM 2007, Two Volume Set, pp. 591–597. CRC Press (2011)Google Scholar
  45. 45.
    Wen, B., Zhang, C., Tu, Y., Wang, C., Fang, H.: Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations. J. Comput. Phys. 266, 161–170 (2014). doi: 10.1016/ MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Wilcock, P.R., Kenworthy, S.T., Crowe, J.C.: Experimental study of the transport of mixed sand and gravel. Water Resour. Res. 37(12), 3349–3358 (2001). doi: 10.1029/2001WR000683 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Chair for System SimulationFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Institute of Hydraulic Engineering and Water Resources ManagementRWTH Aachen UniversityAachenGermany

Personalised recommendations