Use of Mass Spectrometry to Study the Centromere and Kinetochore

Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 56)


A number of paths have led to the present list of centromere proteins, which is essentially complete for constitutive structural proteins, but still may be only partial if we consider the many other proteins that briefly visit the centromere and kinetochore to fine-tune the chromatin and adjust other functions. Elegant genetics led to the description of the budding yeast point centromere in 1980. In the same year was published the serendipitous discovery of antibodies that stained centromeres of human mitotic chromosomes in antisera from CREST patients. Painstaking biochemical analyses led to the identification of the human centromere antigens several years later, with the first yeast proteins being described 6 years after that. Since those early days, the discovery and cloning of centromere and kinetochore proteins has largely been driven by improvements in technology. These began with expression cloning methods, which allowed antibodies to lead to cDNA clones. Next, functional screens for kinetochore proteins were made possible by the isolation of yeast centromeric DNAs. Ultimately, the completion of genome sequences for humans and model organisms permitted the coupling of biochemical fractionation with protein identification by mass spectrometry. Subsequent improvements in mass spectrometry have led to the current state where virtually all structural components of the kinetochore are known and where a high-resolution map of the entire structure will likely emerge within the next several years.


Centromere Protein Stable Isotope Labeling Of Amino Acids In Cell Culture (SILAC) Ndc80 Complex Mis12 Complex Outer Kinetochore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Shinya Ohta and Juri Rappsilber for allowing us to reproduce their unpublished data. Work in the Earnshaw lab is funded by the Wellcome Trust, of which W.C.E. is a Principal Research Fellow (grant number 073915). The Wellcome Trust Centre for Cell Biology is supported by core grant numbers 077707 and 092076.


  1. Abad MA, Medina B, Santamaria A, Zou J, Plasberg-Hill C, Madhumalar A, Jayachandran U, Redli PM, Rappsilber J, Nigg EA et al (2014) Structural basis for microtubule recognition by the human kinetochore Ska complex. Nat Commun 5:2964PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M (2006) The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 7:R80PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adolph KW, Cheng SM, Paulson JR, Laemmli UK (1977) Isolation of a protein scaffold from mitotic HeLa cell chromosomes. Proc Natl Acad Sci (USA) 11:4937–4941CrossRefGoogle Scholar
  4. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207PubMedCrossRefGoogle Scholar
  5. Akiyoshi B, Gull K (2014) Discovery of unconventional kinetochores in kinetoplastids. Cell 156:1247–1258PubMedPubMedCentralCrossRefGoogle Scholar
  6. Akiyoshi B, Nelson CR, Ranish JA, Biggins S (2009) Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit. Genes Dev 23:2887–2899PubMedPubMedCentralCrossRefGoogle Scholar
  7. Akiyoshi B, Sarangapani KK, Powers AF, Nelson CR, Reichow SL, Arellano-Santoyo H, Gonen T, Ranish JA, Asbury CL, Biggins S (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468:576–579PubMedPubMedCentralCrossRefGoogle Scholar
  8. Amano M, Suzuki A, Hori T, Backer C, Okawa K, Cheeseman IM, Fukagawa T (2009) The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J Cell Biol 186:173–182PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barysz H, Kim JH, Chen ZA, Hudson DF, Rappsilber J, Gerloff DL, Earnshaw WC (2015) Three-dimensional topology of the SMC2/SMC4 subcomplex from chicken condensin I revealed by cross-linking and molecular modelling. Open Biol 5Google Scholar
  10. Basilico F, Maffini S, Weir JR, Prumbaum D, Rojas AM, Zimniak T, De Antoni A, Jeganathan S, Voss B, van Gerwen S et al (2014) The pseudo GTPase CENP-M drives human kinetochore assembly. Elife 3:e02978PubMedPubMedCentralCrossRefGoogle Scholar
  11. Biggins S (2013) The composition, functions, and regulation of the budding yeast kinetochore. Genetics 194:817–846PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bischoff FR, Maier G, Tilz G, Ponstingl H (1990) A 47-kDa human nuclear protein recognized by antikinetochore autoimmune sera is homologous with the protein encoded by RCC1, a gene implicated in onset of chromosome condensation. Proc Nat Acad Sci (USA) 87:8617–8621CrossRefGoogle Scholar
  13. Bischoff FR, Ponstingl H (1991a) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354:80–82PubMedCrossRefGoogle Scholar
  14. Bischoff FR, Ponstingl H (1991b) Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide. Proc Natl Acad Sci (USA) 88:10830–10834CrossRefGoogle Scholar
  15. Brenner S, Pepper D, Berns MW, Tan E, Brinkley BR (1981) Kinetochore structure, duplication and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J Cell Biol 91:95–102PubMedCrossRefGoogle Scholar
  16. Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KH, Wong LH (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci (USA) 109:1979–1984CrossRefGoogle Scholar
  17. Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46PubMedCrossRefGoogle Scholar
  18. Cheeseman IM, Niessen S, Anderson S, Hyndman F, Yates JR, Oegema K, Desai A (2004) A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev 18:2255–2268PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen ZA, Fischer L, Cox J, Rappsilber J (2016) Quantitative cross-linking/mass spectrometry using isotope-labeled cross-linkers and MaxQuant. Mol Cell Proteomics 15:2769–2778PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chikashige Y, Kinoshita N, Nakaseko Y, Matsumoto T, Murikami S, Niwa O, Yanagida M (1989) Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of Notl restriction sites. Cell 57:739–751PubMedCrossRefGoogle Scholar
  21. Ciferri C, Pasqualato S, Screpanti E, Varetti G, Santaguida S, Dos Reis G, Maiolica A, Polka J, De Luca JG, De Wulf P et al (2008) Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133:427–439PubMedPubMedCentralCrossRefGoogle Scholar
  22. Clarke L, Baum MP (1990) Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. Mol Cell Biol 10:1863–1872PubMedPubMedCentralCrossRefGoogle Scholar
  23. Clarke L, Carbon J (1980) Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287:504–509PubMedCrossRefGoogle Scholar
  24. Cooke CA, Heck MM, Earnshaw WC (1987) The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J Cell Biol 105:2053–2067PubMedCrossRefGoogle Scholar
  25. D’Archivio S, Wickstead B (2017) Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J Cell Biol 216:379–391PubMedPubMedCentralCrossRefGoogle Scholar
  26. De Wulf P, McAinsh AD, Sorger PK (2003) Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev 17:2902–2921PubMedPubMedCentralCrossRefGoogle Scholar
  27. Desai A, Rybina S, Muller-Reichert T, Shevchenko A, Hyman A, Oegema K (2003) KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev 17:2421–2435PubMedPubMedCentralCrossRefGoogle Scholar
  28. Doheny KF, Sorger PK, Hyman AA, Tugendreich S, Spencer F, Hieter P (1993) Identification of essential components of the S. cerevisiae kinetochore. Cell 73:761–774PubMedCrossRefGoogle Scholar
  29. Earnshaw WC, Halligan N, Cooke C, Rothfield N (1984) The kinetochore is part of the chromosome scaffold. J Cell Biol 98:352–357PubMedCrossRefGoogle Scholar
  30. Earnshaw WC, Laemmli UK (1983) Architecture of metaphase chromosomes and chromosome scaffolds. JCell Biol 96:84–93CrossRefGoogle Scholar
  31. Earnshaw WC, Migeon B (1985) A family of centromere proteins is absent from the latent centromere of a stable isodicentric chromosome. Chromosoma (Berl) 92:290–296CrossRefGoogle Scholar
  32. Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma (Berl) 91:313–321CrossRefGoogle Scholar
  33. Earnshaw WC, Sullivan KF, Machlin PS, Cooke CA, Kaiser DA, Pollard TD, Rothfield NF, Cleveland DW (1987) Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol 104:817–829PubMedCrossRefGoogle Scholar
  34. Fischer L, Chen ZA, Rappsilber J (2013) Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers. J Proteomics 88:120–128PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fishel B, Amstitz H, Baum M, Carbon J, Clarke L (1988) Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 8:754–763PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fitzgerald-Hayes M, Clarke L, Carbon J (1982) Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235–244PubMedCrossRefGoogle Scholar
  37. Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8:458–469PubMedCrossRefGoogle Scholar
  38. Friese A, Faesen AC, Huis in’t Veld PJ, Fischbock J, Prumbaum D, Petrovic A, Raunser S, Herzog F, Musacchio A (2016) Molecular requirements for the inter-subunit interaction and kinetochore recruitment of SKAP and Astrin. Nat Commun 7:11407PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM (2011) Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145:410–422PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gassmann R, Carvalho A, Henzing AJ, Ruchaud S, Hudson DF, Honda R, Nigg EA, Gerloff DL, Earnshaw WC (2004) Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J Cell Biol 166:179–191PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gassmann R, Henzing AJ, Earnshaw WC (2005) Novel components of human mitotic chromosomes identified by proteomic analysis of the chromosome scaffold fraction. Chromosoma 113:385–397PubMedCrossRefGoogle Scholar
  42. Gonczy P, Echeverri C, Oegema K, Coulson A, Jones SJ, Copley RR, Duperon J, Oegema J, Brehm M, Cassin E et al (2000) Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408:331–336PubMedCrossRefGoogle Scholar
  43. Goshima G, Saitoh S, Yanagida M (1999) Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev 13:1664–1677PubMedPubMedCentralCrossRefGoogle Scholar
  44. Guldner HH, Lakomek H-J, Bautz FA (1984) Human anti-centromere sera recognise a 19.5 kD non-histone chromosomal protein from HeLa cells. Clin Exp Immunol 58:13–20PubMedPubMedCentralGoogle Scholar
  45. Hahnenberger KM, Baum MP, Polizzi CM, Carbon J, Clarke L (1989) Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc Nat Acad Sci (USA) 86:577–581CrossRefGoogle Scholar
  46. Han X, Aslanian A, Yates JR 3rd (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hayashi T, Fujita Y, Iwasaki O, Adachi Y, Takahashi K, Yanagida M (2004) Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118:715–729PubMedCrossRefGoogle Scholar
  48. Hieter P, Pridmore D, Hegemann JH, Thomas M, Davis RW, Philippsen P (1985) Functional selection and analysis of yeast centromeric DNA. Cell 42:913–921PubMedCrossRefGoogle Scholar
  49. Hori T, Amano M, Suzuki A, Backer CB, Welburn JP, Dong Y, McEwen BF, Shang WH, Suzuki E, Okawa K et al (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135:1039–1052PubMedCrossRefGoogle Scholar
  50. Hornung P, Troc P, Malvezzi F, Maier M, Demianova Z, Zimniak T, Litos G, Lampert F, Schleiffer A, Brunner M et al (2014) A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. J Cell Biol 206:509–524PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hyland KM, Kingsbury J, Koshland D, Hieter P (1999) Ctf19p: a novel kinetochore protein in Saccharomyces cerevisiae and a potential link between the kinetochore and mitotic spindle. J Cell Biol 145:15–28PubMedPubMedCentralCrossRefGoogle Scholar
  52. Izuta H, Ikeno M, Suzuki N, Tomonaga T, Nozaki N, Obuse C, Kisu Y, Goshima N, Nomura F, Nomura N et al (2006) Comprehensive analysis of the ICEN (interphase centromere complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11:673–684PubMedCrossRefGoogle Scholar
  53. Jensen ON, Podtelejnikov AV, Mann M (1997) Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal Chem 69:4741–4750PubMedCrossRefGoogle Scholar
  54. Jensen ON, Wilm M, Shevchenko A, Mann M (1999) Peptide sequencing of 2-DE gel-isolated proteins by nanoelectrospray tandem mass spectrometry. Methods Mol Biol 112:571–588PubMedGoogle Scholar
  55. Kang YH, Park CH, Kim TS, Soung NK, Bang JK, Kim BY, Park JE, Lee KS (2011) Mammalian polo-like kinase 1-dependent regulation of the PBIP1-CENP-Q complex at kinetochores. J Biol Chem 286:19744–19757PubMedPubMedCentralCrossRefGoogle Scholar
  56. Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13:489–496PubMedCrossRefGoogle Scholar
  57. Klare K, Weir JR, Basilico F, Zimniak T, Massimiliano L, Ludwigs N, Herzog F, Musacchio A (2015) CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. J Cell Biol 210:11–22PubMedCrossRefGoogle Scholar
  58. Kustatscher G, Grabowski P, Rappsilber J (2016) Multiclassifier combinatorial proteomics of organelle shadows at the example of mitochondria in chromatin data. Proteomics 16:393–401PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lechner J, Carbon J (1991) A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64:717–725PubMedCrossRefGoogle Scholar
  60. Leitner A, Faini M, Stengel F, Aebersold R (2016) Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem Sci 41:20–32PubMedCrossRefGoogle Scholar
  61. Lewis CD, Laemmli UK (1982) Higher order metaphase chromosome structure: evidence for metalloprotein interactions. Cell 29:171–181PubMedCrossRefGoogle Scholar
  62. Liao H, Winkfein RJ, Mack G, Rattner JB, Yen TJ (1995) CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J Cell Biol 130:507–518PubMedCrossRefGoogle Scholar
  63. Macek B, Waanders LF, Olsen JV, Mann M (2006) Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol Cell Proteomics 5:949–958PubMedCrossRefGoogle Scholar
  64. Maddox PS, Hyndman F, Monen J, Oegema K, Desai A (2007) Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol 176:757–763PubMedPubMedCentralCrossRefGoogle Scholar
  65. Maine GT, Sinha P, Tye BK (1984) Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 106:365–385PubMedPubMedCentralGoogle Scholar
  66. Maiolica A, Cittaro D, Borsotti D, Sennels L, Ciferri C, Tarricone C, Musacchio A, Rappsilber J (2007) Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching. Mol Cell Proteomics 6:2200–2211PubMedCrossRefGoogle Scholar
  67. Meeks-Wagner D, Wood JS, Garvik B, Hartwell LH (1986) Isolation of two genes that affect mitotic chromosome transmission in S. cerevisiae. Cell 44:53–63PubMedCrossRefGoogle Scholar
  68. Meluh PB, Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6:793–807PubMedPubMedCentralCrossRefGoogle Scholar
  69. Molina O, Vargiu G, Abad MA, Zhiteneva A, Jeyaprakash AA, Masumoto H, Kouprina N, Larionov V, Earnshaw WC (2016) Epigenetic engineering reveals a balance between histone modifications and transcription in kinetochore maintenance. Nat Commun 7:13334PubMedPubMedCentralCrossRefGoogle Scholar
  70. Montaño-Gutierrez LF, Ohta S, Kustatscher G, Earnshaw WC, Rappsilber J (2017) Nano random forests to mine protein complexes and their relationships in quantitative proteomics data. Mol Biol Cell 28:673–680Google Scholar
  71. Moroi Y, Hartman AL, Nakane PK, Tan EM (1981) Distribution of kinetochore (centromere) antigen in mammalian cell nuclei. J Cell Biol 90:254–259PubMedCrossRefGoogle Scholar
  72. Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Nat Acad Sci (USA) 77:1627–1631CrossRefGoogle Scholar
  73. Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103:10236–10241PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nakaseko Y, Adachi Y, Funahashi S, Niwa O, Yanagida M (1986) Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. The EMBO J 5:1011–1021PubMedGoogle Scholar
  75. Nerusheva OO, Akiyoshi B (2016) Divergent polo box domains underpin the unique kinetoplastid kinetochore. Open Biol 6Google Scholar
  76. Nishihashi A, Haraguchi T, Hiraoka Y, Ikemura T, Regnier V, Dodson H, Earnshaw WC, Fukagawa T (2002) CENP-I is essential for centromere function in vertebrate cells. Dev Cell 2:463–476PubMedCrossRefGoogle Scholar
  77. Nishino T, Rago F, Hori T, Tomii K, Cheeseman IM, Fukagawa T (2013) CENP-T provides a structural platform for outer kinetochore assembly. EMBO J 32:424–436PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nishino T, Takeuchi K, Gascoigne KE, Suzuki A, Hori T, Oyama T, Morikawa K, Cheeseman IM, Fukagawa T (2012) CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148:487–501PubMedPubMedCentralCrossRefGoogle Scholar
  79. Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K (2004) Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells 9:105–120PubMedCrossRefGoogle Scholar
  80. Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153:1209–1226PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ohta S, Bukowski-Wills JC, Sanchez-Pulido L, Alves Fde L, Wood L, Chen ZA, Platani M, Fischer L, Hudson DF, Ponting CP et al (2010a) The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142:810–821PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ohta S, Bukowski-Wills JC, Wood L, de Lima Alves F, Chen Z, Rappsilber J, Earnshaw WC (2010b) Proteomics of isolated mitotic chromosomes identifies the kinetochore protein Ska3/Rama1. Cold Spring Harb Symp Quant Biol 75:433–438PubMedCrossRefGoogle Scholar
  83. Ohta S, Montano-Gutierrez LF, de Lima Alves F, Ogawa H, Toramoto I, Sato N, Morrison CG, Takeda S, Hudson DF, Rappsilber J et al (2016) Proteomics analysis with a nano random forest approach reveals novel functional interactions regulated by SMC complexes on mitotic chromosomes. Mol Cell Proteomics 15:2802–2818PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ohta S, Wood L, Bukowski-Wills JC, Rappsilber J, Earnshaw WC (2010c) Building mitotic chromosomes. Curr Opin Cell Biol 23:114–121PubMedCrossRefGoogle Scholar
  85. Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8:446–457PubMedCrossRefGoogle Scholar
  86. Ong SE, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29:124–130PubMedCrossRefGoogle Scholar
  87. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660PubMedCrossRefGoogle Scholar
  88. Ortiz J, Stemmann O, Rank S, Lechner J (1999) A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev 13:1140–1155PubMedPubMedCentralCrossRefGoogle Scholar
  89. Palmer DK, Margolis RL (1985) Kinetochore components recognized by human autoantibodies are present on mononucleosomes. Mol Cell Biol 5:173–186PubMedPubMedCentralCrossRefGoogle Scholar
  90. Palmer DK, O’Day K, Le Trong H, Charbonneau H, Margolis RL (1991) Purification of the centromeric protein CENP-A and demonstration that it is a centromere specific histone. Proc Nat Acad Sci (USA) 88:3734–3738CrossRefGoogle Scholar
  91. Pekgoz Altunkaya G, Malvezzi F, Demianova Z, Zimniak T, Litos G, Weissmann F, Mechtler K, Herzog F, Westermann S (2016) CCAN assembly configures composite binding interfaces to promote cross-linking of Ndc80 complexes at the Kinetochore. Curr Biol 26:2370–2378PubMedCrossRefGoogle Scholar
  92. Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC (1995) The centromere: hub of chromosomal activities. Science 270:1591–1594PubMedCrossRefGoogle Scholar
  93. Przewloka MR, Venkei Z, Bolanos-Garcia VM, Debski J, Dadlez M, Glover DM (2011) CENP-C is a structural platform for kinetochore assembly. Curr Biol 21:399–405PubMedCrossRefGoogle Scholar
  94. Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, Eng J, Aebersold R (2003) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33:349–355PubMedCrossRefGoogle Scholar
  95. Rout MP, Kilmartin JV (1990) Components of the yeast spindle and spindle pole body. J Cell Biol 111:1913–1927PubMedCrossRefGoogle Scholar
  96. Roy N, Poddar A, Lohia A, Sinha P (1997) The mcm17 mutation of yeast shows a size-dependent segregational defect of a mini-chromosome. Curr Genet 32:182–189PubMedCrossRefGoogle Scholar
  97. Saitoh H, Tomkiel JE, Cooke CA, Ratrie HR, Maurer M, Rothfield NF, Earnshaw WC (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70:115–125PubMedCrossRefGoogle Scholar
  98. Samejima I, Spanos C, Alves Fde L, Hori T, Perpelescu M, Zou J, Rappsilber J, Fukagawa T, Earnshaw WC (2015) Whole-proteome genetic analysis of dependencies in assembly of a vertebrate kinetochore. J Cell Biol 211:1141–1156PubMedPubMedCentralCrossRefGoogle Scholar
  99. Saunders WS, Chue C, Goebl M, Craig C, Clark RF, Powers JA, Eissenberg JC, Elgin SC, Rothfield NF, Earnshaw WC (1993) Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J Cell Sci 104:573–582PubMedGoogle Scholar
  100. Schleiffer A, Maier M, Litos G, Lampert F, Hornung P, Mechtler K, Westermann S (2012) CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14:604–613PubMedCrossRefGoogle Scholar
  101. Screpanti E, De Antoni A, Alushin GM, Petrovic A, Melis T, Nogales E, Musacchio A (2011) Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr Biol 21:391–398PubMedPubMedCentralCrossRefGoogle Scholar
  102. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedPubMedCentralCrossRefGoogle Scholar
  103. Singh TR, Saro D, Ali AM, Zheng XF, Du CH, Killen MW, Sachpatzidis A, Wahengbam K, Pierce AJ, Xiong Y et al (2010) MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol Cell 37:879–886PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E et al (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–469PubMedCrossRefGoogle Scholar
  105. Spencer F, Gerring SL, Connelly C, Hieter P (1990) Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics 124:237–249PubMedPubMedCentralGoogle Scholar
  106. Steiner N, Clarke L (1994) A novel epigenetic effect can alter centromere function in fission yeast. Cell 79:865–874PubMedCrossRefGoogle Scholar
  107. Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9:573–586PubMedCrossRefGoogle Scholar
  108. Sullivan KF, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127:581–592PubMedCrossRefGoogle Scholar
  109. Tadeu AM, Ribeiro S, Johnston J, Goldberg I, Gerloff D, Earnshaw WC (2008) CENP-V is required for centromere organization, chromosome alignment and cytokinesis. EMBO J 27:2510–2522PubMedPubMedCentralCrossRefGoogle Scholar
  110. Takahashi K, Yamada H, Yanagida M (1994) Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol Biol Cell 5:1145–1158PubMedPubMedCentralCrossRefGoogle Scholar
  111. Takata H, Uchiyama S, Nakamura N, Nakashima S, Kobayashi S, Sone T, Kimura S, Lahmers S, Granzier H, Labeit S et al (2007) A comparative proteome analysis of human metaphase chromosomes isolated from two different cell lines reveals a set of conserved chromosome-associated proteins. Genes Cells 12:269–284PubMedCrossRefGoogle Scholar
  112. Takeuchi K, Nishino T, Mayanagi K, Horikoshi N, Osakabe A, Tachiwana H, Hori T, Kurumizaka H, Fukagawa T (2013) The centromeric nucleosome-like CENP-T-W-S-X complex induces positive supercoils into DNA. Nucleic Acids Res 42:1644–1655PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740PubMedCrossRefGoogle Scholar
  114. Uchiyama S, Kobayashi S, Takata H, Ishihara T, Hori N, Higashi T, Hayashihara K, Sone T, Higo D, Nirasawa T et al (2005) Proteome analysis of human metaphase chromosomes. J Biol Chem 280:16994–17004PubMedCrossRefGoogle Scholar
  115. Vafa O, Sullivan KF (1997) Chromatin containing CENP-A and a-satellite DNA is a major component of the inner kinetochore plate. Curr Biol 7:897–900PubMedCrossRefGoogle Scholar
  116. Warburton PE, Cooke C, Bourassa S, Vafa O, Sullivan BA, Stetten G, Gimelli G, Warburton D, Tyler-Smith C, Sullivan KF et al (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904PubMedCrossRefGoogle Scholar
  117. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247PubMedCrossRefGoogle Scholar
  118. Weir JR, Faesen AC, Klare K, Petrovic A, Basilico F, Fischbock J, Pentakota S, Keller J, Pesenti ME, Pan D et al (2016) Insights from biochemical reconstitution into the architecture of human kinetochores. Nature 537:249–253PubMedCrossRefGoogle Scholar
  119. Westermann S, Drubin DG, Barnes G (2007) Structures and functions of yeast kinetochore complexes. Annu Rev Biochem 76:563–591PubMedCrossRefGoogle Scholar
  120. Wigge PA, Jensen ON, Holmes S, Soues S, Mann M, Kilmartin JV (1998) Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J Cell Biol 141:967–977PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wigge PA, Kilmartin JV (2001) The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152:349–360PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yamagishi Y, Sakuno T, Goto Y, Watanabe Y (2014) Kinetochore composition and its function: lessons from yeasts. FEMS Microbiol Rev 38:185–200PubMedCrossRefGoogle Scholar
  123. Yan Z, Delannoy M, Ling C, Daee D, Osman F, Muniandy PA, Shen X, Oostra AB, Du H, Steltenpool J et al (2010) A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol Cell 37:865–878PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yates JR 3rd (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33:1–19PubMedCrossRefGoogle Scholar
  125. Yen TJ, Compton DA, Wise D, Zinkowski RP, Brinkley BR, Earnshaw WC, Cleveland DW (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 10:1245–1254PubMedPubMedCentralGoogle Scholar
  126. Young RA, Davis RB (1983) Yeast polymerase II genes: isolation with antibody probes. Science 222:778–782PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghScotland, UK

Personalised recommendations