Advertisement

A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC

  • Giulia Vallardi
  • Marilia Henriques Cordeiro
  • Adrian Thomas SaurinEmail author
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 56)

Abstract

The KMN network (for KNL1, MIS12 and NDC80 complexes) is a hub for signalling at the outer kinetochore. It integrates the activities of two kinases (MPS1 and Aurora B) and two phosphatases (PP1 and PP2A-B56) to regulate kinetochore-microtubule attachments and the spindle assembly checkpoint (SAC). We will first discuss each of these enzymes separately, to describe how they are regulated at kinetochores and why this is important for their primary function in controlling either microtubule attachments or the SAC. We will then discuss why inhibiting any one of them individually produces secondary effects on all the others. This cross-talk may help to explain why all enzymes have been linked to both processes, even though the direct evidence suggests they each control only one. This chapter therefore describes how a network of kinases and phosphatases work together to regulate two key mitotic processes.

References

  1. Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbe JC (2001) Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106(1):83–93PubMedCrossRefGoogle Scholar
  2. Akiyoshi B, Nelson CR, Ranish JA, Biggins S (2009) Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit. Genes Dev 23(24):2887–2899. doi: 10.1101/gad.1865909 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akiyoshi B, Sarangapani KK, Powers AF, Nelson CR, Reichow SL, Arellano-Santoyo H, Gonen T, Ranish JA, Asbury CL, Biggins S (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468(7323):576–579. doi: 10.1038/nature09594 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alushin GM, Ramey VH, Pasqualato S, Ball DA, Grigorieff N, Musacchio A, Nogales E (2010) The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467(7317):805–810. doi: 10.1038/nature09423 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alvarez-Tabares I, Grallert A, Ortiz JM, Hagan IM (2007) Schizosaccharomyces pombe protein phosphatase 1 in mitosis, endocytosis and a partnership with Wsh3/Tea4 to control polarised growth. J Cell Sci 120(Pt 20):3589–3601. doi: 10.1242/jcs.007567 PubMedCrossRefGoogle Scholar
  6. Andrews PD, Ovechkina Y, Morrice N, Wagenbach M, Duncan K, Wordeman L, Swedlow JR (2004) Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6(2):253–268PubMedCrossRefGoogle Scholar
  7. Aravamudhan P, Goldfarb AA, Joglekar AP (2015) The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling. Nat Cell Biol 17(7):868–879. doi: 10.1038/ncb3179 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Asbury CL, Gestaut DR, Powers AF, Franck AD, Davis TN (2006) The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc Natl Acad Sci U S A 103(26):9873–9878. doi: 10.1073/pnas.0602249103 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ballister ER, Riegman M, Lampson MA (2014) Recruitment of Mad1 to metaphase kinetochores is sufficient to reactivate the mitotic checkpoint. J Cell Biol 204(6):901–908. doi: 10.1083/jcb.201311113 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Banerjee B, Kestner CA, Stukenberg PT (2014) EB1 enables spindle microtubules to regulate centromeric recruitment of Aurora B. J Cell Biol 204(6):947–963. doi: 10.1083/jcb.201307119 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bekier ME, Mazur T, Rashid MS, Taylor WR (2015) Borealin dimerization mediates optimal CPC checkpoint function by enhancing localization to centromeres and kinetochores. Nat Commun 6:6775. doi: 10.1038/ncomms7775 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Biggins S, Severin FF, Bhalla N, Sassoon I, Hyman AA, Murray AW (1999) The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev 13(5):532–544PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bishop JD, Schumacher JM (2002) Phosphorylation of the carboxyl terminus of inner centromere protein (INCENP) by the Aurora B Kinase stimulates Aurora B kinase activity. J Biol Chem 277(31):27577–27580. doi: 10.1074/jbc.C200307200 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bloecher A, Tatchell K (1999) Defects in Saccharomyces cerevisiae protein phosphatase type I activate the spindle/kinetochore checkpoint. Genes Dev 13(5):517–522PubMedPubMedCentralCrossRefGoogle Scholar
  15. Booher R, Beach D (1989) Involvement of a Type 1 protein phosphatase encoded by bwsl+ in fission yeast mitotic control. Cell 57:1009–1016PubMedCrossRefGoogle Scholar
  16. Bourhis E, Lingel A, Phung Q, Fairbrother WJ, Cochran AG (2009) Phosphorylation of a borealin dimerization domain is required for proper chromosome segregation. Biochemistry 48(29):6783–6793. doi: 10.1021/bi900530v PubMedCrossRefGoogle Scholar
  17. Caldas GV, DeLuca JG (2014) KNL1: bringing order to the kinetochore. Chromosoma 123(3):169–181. doi: 10.1007/s00412-013-0446-5 PubMedCrossRefGoogle Scholar
  18. Caldas GV, DeLuca KF, DeLuca JG (2013) KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting Aurora B kinase activity. J Cell Biol 203(6):957–969. doi: 10.1083/jcb.201306054 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Campbell CS, Desai A (2013) Tension sensing by Aurora B kinase is independent of surviving-based centromere localization. Nature 497(7447):118–121. doi: 10.1038/nature12057 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Carmena M, Pinson X, Platani M, Salloum Z, Xu Z, Clark A, Macisaac F, Ogawa H, Eggert U, Glover DM, Archambault V, Earnshaw WC (2012a) The chromosomal passenger complex activates Polo kinase at centromeres. PLoS Biol 10(1):e1001250. doi: 10.1371/journal.pbio.1001250 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012b) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13(12):789–803. doi: 10.1038/nrm3474 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Castillo AR, Meehl JB, Morgan G, Schutz-Geschwender A, Winey M (2002) The yeast protein kinase Mps1p is required for assembly of the integral spindle pole body component Spc42p. J Cell Biol 156(3):453–465. doi: 10.1083/jcb.200111025 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chan CS, Botstein D (1993) Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135(3):677–691PubMedPubMedCentralGoogle Scholar
  24. Chan YW, Jeyaprakash AA, Nigg EA, Santamaria A (2012) Aurora B controls kinetochore-microtubule attachments by inhibiting Ska complex-KMN network interaction. J Cell Biol 196(5):563–571. doi: 10.1083/jcb.201109001 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cheeseman IM, Anderson S, Jwa M, Green EM, Kang J, Yates JR 3rd, Chan CS, Drubin DG, Barnes G (2002) Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111(2):163–172PubMedCrossRefGoogle Scholar
  26. Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127(5):983–997. doi: 10.1016/j.cell.2006.09.039 PubMedCrossRefGoogle Scholar
  27. Chen Q, Zhang X, Jiang Q, Clarke PR, Zhang C (2008) Cyclin B1 is localized to unattached kinetochores and contributes to efficient microtubule attachment and proper chromosome alignment during mitosis. Cell Res 18(2):268–280. doi: 10.1038/cr.2008.11 PubMedCrossRefGoogle Scholar
  28. Ciferri C, Pasqualato S, Screpanti E, Varetti G, Santaguida S, Dos Reis G, Maiolica A, Polka J, De Luca JG, De Wulf P, Salek M, Rappsilber J, Moores CA, Salmon ED, Musacchio A (2008) Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133(3):427–439. doi: 10.1016/j.cell.2008.03.020 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dai J, Sullivan BA, Higgins JM (2006) Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev Cell 11(5):741–750. doi: 10.1016/j.devcel.2006.09.018 PubMedCrossRefGoogle Scholar
  30. De Wever V, Nasa I, Chamousset D, Lloyd D, Nimick M, Xu H, Trinkle-Mulcahy L, Moorhead GB (2014) The human mitotic kinesin KIF18A binds protein phosphatase 1 (PP1) through a highly conserved docking motif. Biochem Biophys Res Commun 453(3):432–437. doi: 10.1016/j.bbrc.2014.09.105 PubMedCrossRefGoogle Scholar
  31. DeLuca JG, Gall WE, Ciferri C, Cimini D, Musacchio A, Salmon ED (2006) Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127(5):969–982. doi: 10.1016/j.cell.2006.09.047 PubMedCrossRefGoogle Scholar
  32. DeLuca KF, Lens SM, DeLuca JG (2011) Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis. J Cell Sci 124(Pt 4):622–634. doi: 10.1242/jcs.072629 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dimitrova YN, Jenni S, Valverde R, Khin Y, Harrison SC (2016) Structure of the MIND complex defines a regulatory focus for yeast kinetochore assembly. Cell 167(4):1014–1027, e1012. doi: 10.1016/j.cell.2016.10.011
  34. Ditchfield C, Johnson VL, Tighe A, Ellston R, Haworth C, Johnson T, Mortlock A, Keen N, Taylor SS (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161(2):267–280. doi: 10.1083/jcb.200208091 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dohadwala M, Da Cruz EF, Da Cruz S, Hall FL, Williams RT, Carbonaro-Hall D, Nairn AC, Greengard P, Berndt N (1994) Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. Proc Natl Acad Sci U S A 91:6408–6412PubMedPubMedCentralCrossRefGoogle Scholar
  36. Duan H, Wang C, Wang M, Gao X, Yan M, Akram S, Peng W, Zou H, Wang D, Zhou J, Chu Y, Dou Z, Barrett G, Green HN, Wang F, Tian R, He P, Wang W, Liu X, Yao X (2016) Phosphorylation of PP1 regulator Sds22 by PLK1 ensures accurate chromosome segregation. J Biol Chem 291(40):21123–21136. doi: 10.1074/jbc.M116.745372 PubMedCrossRefGoogle Scholar
  37. Edgerton H, Johansson M, Keifenheim D, Mukherjee S, Chacon JM, Bachant J, Gardner MK, Clarke DJ (2016) A noncatalytic function of the topoisomerase II CTD in Aurora B recruitment to inner centromeres during mitosis. J Cell Biol 213(6):651–664. doi: 10.1083/jcb.201511080 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Egloff MP, Johnson DF, Moorhead G, Cohen PTW, Cohen P, Barford D (1997) Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J 16(8):1876–1887. doi: 10.1093/emboj/16.8.1876 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Espert A, Uluocak P, Bastos RN, Mangat D, Graab P, Gruneberg U (2014) PP2A-B56 opposes Mps1 phosphorylation of Knl1 and thereby promotes spindle assembly checkpoint silencing. J Cell Biol 206(7):833–842. doi: 10.1083/jcb.201406109 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Espeut J, Cheerambathur DK, Krenning L, Oegema K, Desai A (2012) Microtubule binding by KNL-1 contributes to spindle checkpoint silencing at the kinetochore. J Cell Biol 196(4):469–482. doi: 10.1083/jcb.201111107 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Espeut J, Gaussen A, Bieling P, Morin V, Prieto S, Fesquet D, Surrey T, Abrieu A (2008) Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol Cell 29(5):637–643. doi: 10.1016/j.molcel.2008.01.004 PubMedCrossRefGoogle Scholar
  42. Espeut J, Lara-Gonzalez P, Sassine M, Shiau AK, Desai A, Abrieu A (2015) Natural loss of Mps1 Kinase in nematodes uncovers a role for polo-like kinase 1 in spindle checkpoint initiation. Cell reports 12(1):58–65. doi: 10.1016/j.celrep.2015.05.039 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Etemad B, Kops GJ (2016) Attachment issues: kinetochore transformations and spindle checkpoint silencing. Curr Opin Cell Biol 39:101–108. doi: 10.1016/j.ceb.2016.02.016 PubMedCrossRefGoogle Scholar
  44. Fisk HA, Winey M (2001) The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106(1):95–104PubMedCrossRefGoogle Scholar
  45. Foley EA, Maldonado M, Kapoor TM (2011) Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat Cell Biol 13(10):1265–1271. doi: 10.1038/ncb2327 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Francisco L, Wang W, Chan CSM (1994) Type 1 protein phosphatase acts in opposition to Ipll protein kinase in regulating yeast chromosome segregation. Mol Cell Biol 14(7):4731–4740PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gaitanos TN, Santamaria A, Jeyaprakash AA, Wang B, Conti E, Nigg EA (2009) Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J 28(10):1442–1452. doi: 10.1038/emboj.2009.96 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ghenoiu C, Wheelock MS, Funabiki H (2013) Autoinhibition and Polo-dependent multisite phosphorylation restrict activity of the histone H3 kinase Haspin to mitosis. Mol Cell 52(5):734–745. doi: 10.1016/j.molcel.2013.10.002 PubMedCrossRefGoogle Scholar
  49. Ghongane P, Kapanidou M, Asghar A, Elowe S, Bolanos-Garcia VM (2014) The dynamic protein Knl1—a kinetochore rendezvous. J Cell Sci 127(Pt 16):3415–3423. doi: 10.1242/jcs.149922 PubMedCrossRefGoogle Scholar
  50. Gimenez-Abian JF, Sumara I, Hirota T, Hauf S, Gerlich D, de la Torre C, Ellenberg J, Peters JM (2004) Regulation of sister chromatid cohesion between chromosome arms. Curr Biol: CB 14(13):1187–1193. doi: 10.1016/j.cub.2004.06.052 PubMedCrossRefGoogle Scholar
  51. Glover DM, Leibowitz MH, McLean DA, Parry H (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81(1):95–105PubMedCrossRefGoogle Scholar
  52. Gonen S, Akiyoshi B, Iadanza MG, Shi D, Duggan N, Biggins S, Gonen T (2012) The structure of purified kinetochores reveals multiple microtubule-attachment sites. Nat Struct Mol Biol 19(9):925–929. doi: 10.1038/nsmb.2358 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gopalan G, Chan CS, Donovan PJ (1997) A novel mammalian, mitotic spindle-associated kinase is related to yeast and fly chromosome segregation regulators. J Cell Biol 138(3):643–656PubMedPubMedCentralCrossRefGoogle Scholar
  54. Grallert A, Boke E, Hagting A, Hodgson B, Connolly Y, Griffiths JR, Smith DL, Pines J, Hagan IM (2015) A PP1-PP2A phosphatase relay controls mitotic progression. Nature 517(7532):94–98. doi: 10.1038/nature14019 PubMedCrossRefGoogle Scholar
  55. Guimaraes GJ, Dong Y, McEwen BF, Deluca JG (2008) Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr Biol: CB 18(22):1778–1784. doi: 10.1016/j.cub.2008.08.012 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Haarhuis JH, Elbatsh AM, Rowland BD (2014) Cohesin and its regulation: on the logic of X-shaped chromosomes. Dev Cell 31(1):7–18. doi: 10.1016/j.devcel.2014.09.010 PubMedCrossRefGoogle Scholar
  57. Hafner J, Mayr MI, Mockel MM, Mayer TU (2014) Pre-anaphase chromosome oscillations are regulated by the antagonistic activities of Cdk1 and PP1 on Kif18A. Nat Commun 5:4397. doi: 10.1038/ncomms5397 PubMedCrossRefGoogle Scholar
  58. Hanisch A, Sillje HH, Nigg EA (2006a) Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. EMBO J 25(23):5504–5515. doi: 10.1038/sj.emboj.7601426 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hanisch A, Wehner A, Nigg EA, Sillje HH (2006b) Different Plk1 functions show distinct dependencies on Polo-Box domain-mediated targeting. Mol Biol Cell 17(1):448–459. doi: 10.1091/mbc.E05-08-0801 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hardwick KG, Weiss E, Luca FC, Winey M, Murray AW (1996) Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273(5277):953–956PubMedCrossRefGoogle Scholar
  61. Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters JM (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161(2):281–294. doi: 10.1083/jcb.200208092 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Heinrich S, Windecker H, Hustedt N, Hauf S (2012) Mph1 kinetochore localization is crucial and upstream in the hierarchy of spindle assembly checkpoint protein recruitment to kinetochores. J Cell Sci 125(Pt 20):4720–4727. doi: 10.1242/jcs.110387 PubMedCrossRefGoogle Scholar
  63. Hendrickx A, Beullens M, Ceulemans H, Den Abt T, Van Eynde A, Nicolaescu E, Lesage B, Bollen M (2009) Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol 16(4):365–371. doi: 10.1016/j.chembiol.2009.02.012 PubMedCrossRefGoogle Scholar
  64. Hertz EP, Kruse T, Davey NE, Lopez-Mendez B, Sigurethsson JO, Montoya G, Olsen JV, Nilsson J (2016) A conserved motif provides binding specificity to the PP2A-B56 phosphatase. Mol Cell 63(4):686–695. doi: 10.1016/j.molcel.2016.06.024 PubMedCrossRefGoogle Scholar
  65. Hewitt L, Tighe A, Santaguida S, White AM, Jones CD, Musacchio A, Green S, Taylor SS (2010) Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J Cell Biol 190(1):25–34. doi: 10.1083/jcb.201002133 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hiruma Y, Sacristan C, Pachis ST, Adamopoulos A, Kuijt T, Ubbink M, von Castelmur E, Perrakis A, Kops GJ (2015) Cell division cycle. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science 348(6240):1264–1267. doi: 10.1126/science.aaa4055
  67. Honda R, Korner R, Nigg EA (2003) Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol Biol Cell 14(8):3325–3341. doi: 10.1091/mbc.E02-11-0769 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Howell BJ, Moree B, Farrar EM, Stewart S, Fang G, Salmon ED (2004) Spindle checkpoint protein dynamics at kinetochores in living cells. Curr Biol: CB 14(11):953–964. doi: 10.1016/j.cub.2004.05.053 PubMedCrossRefGoogle Scholar
  69. Hsu JY, Sun ZW, Li X, Reuben M, Tatchell K, Bishop DK, Grushcow JM, Brame CJ, Caldwell JA, Hunt DF, Lin R, Smith MM, Allis CD (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102(3):279–291PubMedCrossRefGoogle Scholar
  70. Hua S, Wang Z, Jiang K, Huang Y, Ward T, Zhao L, Dou Z, Yao X (2011) CENP-U cooperates with Hec1 to orchestrate kinetochore-microtubule attachment. J Biol Chem 286(2):1627–1638. doi: 10.1074/jbc.M110.174946 PubMedCrossRefGoogle Scholar
  71. Iimori M, Watanabe S, Kiyonari S, Matsuoka K, Sakasai R, Saeki H, Oki E, Kitao H, Maehara Y (2016) Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun 7:11117. doi: 10.1038/ncomms11117 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ito D, Saito Y, Matsumoto T (2012) Centromere-tethered Mps1 pombe homolog (Mph1) kinase is a sufficient marker for recruitment of the spindle checkpoint protein Bub1, but not Mad1. Proc Natl Acad Sci U S A 109(1):209–214. doi: 10.1073/pnas.1114647109 PubMedCrossRefGoogle Scholar
  73. Izawa D, Pines J (2015) The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature 517(7536):631–634. doi: 10.1038/nature13911 PubMedCrossRefGoogle Scholar
  74. Jelluma N, Brenkman AB, van den Broek NJ, Cruijsen CW, van Osch MH, Lens SM, Medema RH, Kops GJ (2008) Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell 132(2):233–246. doi: 10.1016/j.cell.2007.11.046 PubMedCrossRefGoogle Scholar
  75. Jelluma N, Dansen TB, Sliedrecht T, Kwiatkowski NP, Kops GJ (2010) Release of Mps1 from kinetochores is crucial for timely anaphase onset. J Cell Biol 191(2):281–290. doi: 10.1083/jcb.201003038 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Jeyaprakash AA, Basquin C, Jayachandran U, Conti E (2011) Structural basis for the recognition of phosphorylated histone h3 by the survivin subunit of the chromosomal passenger complex. Structure 19(11):1625–1634. doi: 10.1016/j.str.2011.09.002 PubMedCrossRefGoogle Scholar
  77. Jeyaprakash AA, Klein UR, Lindner D, Ebert J, Nigg EA, Conti E (2007) Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell 131(2):271–285. doi: 10.1016/j.cell.2007.07.045 PubMedCrossRefGoogle Scholar
  78. Ji Z, Gao H, Yu H (2015) CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science 348(6240):1260–1264. doi: 10.1126/science.aaa4029
  79. Joglekar AP (2016) A cell biological perspective on past, present and future investigations of the spindle assembly checkpoint. Biology (Basel) 5(4). doi: 10.3390/biology5040044
  80. Kang J, Chen Y, Zhao Y, Yu H (2007) Autophosphorylation-dependent activation of human Mps1 is required for the spindle checkpoint. Proc Natl Acad Sci U S A 104(51):20232–20237. doi: 10.1073/pnas.0710519105 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kawashima SA, Tsukahara T, Langegger M, Hauf S, Kitajima TS, Watanabe Y (2007) Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev 21(4):420–435. doi: 10.1101/gad.1497307 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kawashima SA, Yamagishi Y, Honda T, Ishiguro K, Watanabe Y (2010) Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327(5962):172–177. doi: 10.1126/science.1180189 PubMedCrossRefGoogle Scholar
  83. Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, Funabiki H (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330(6001):235–239. doi: 10.1126/science.1189505 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kelly AE, Sampath SC, Maniar TA, Woo EM, Chait BT, Funabiki H (2007) Chromosomal enrichment and activation of the aurora B pathway are coupled to spatially regulate spindle assembly. Dev Cell 12(1):31–43. doi: 10.1016/j.devcel.2006.11.001 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kim HS, Kim SH, Park HY, Lee J, Yoon JH, Choi S, Ryu SH, Lee H, Cho HS, Lee CW (2013) Functional interplay between Aurora B kinase and Ssu72 phosphatase regulates sister chromatid cohesion. Nat Commun 4:2631. doi: 10.1038/ncomms3631 PubMedGoogle Scholar
  86. Kim S, Yu H (2015) Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J Cell Biol 208(2):181–196. doi: 10.1083/jcb.201407074 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kim Y, Holland AJ, Lan W, Cleveland DW (2010) Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell 142(3):444–455. doi: 10.1016/j.cell.2010.06.039 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kimura M, Kotani S, Hattori T, Sumi N, Yoshioka T, Todokoro K, Okano Y (1997) Cell cycle-dependent expression and spindle pole localization of a novel human protein kinase, Aik, related to Aurora of Drosophila and yeast Ipl1. J Biol Chem 272(21):13766–13771PubMedCrossRefGoogle Scholar
  89. Knowlton AL, Vorozhko VV, Lan W, Gorbsky GJ, Stukenberg PT (2009) ICIS and Aurora B coregulate the microtubule depolymerase Kif2a. Curr Biol: CB 19(9):758–763. doi: 10.1016/j.cub.2009.03.018 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Krenn V, Musacchio A (2015) The Aurora B Kinase in chromosome bi-orientation and spindle checkpoint signaling. Front Oncol 5:225. doi: 10.3389/fonc.2015.00225 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Krupina K, Kleiss C, Metzger T, Fournane S, Schmucker S, Hofmann K, Fischer B, Paul N, Porter IM, Raffelsberger W, Poch O, Swedlow JR, Brino L, Sumara I (2016) Ubiquitin receptor protein UBASH3B drives Aurora B recruitment to mitotic microtubules. Dev Cell 36(1):63–78. doi: 10.1016/j.devcel.2015.12.017 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kruse T, Zhang G, Larsen MS, Lischetti T, Streicher W, Kragh Nielsen T, Bjorn SP, Nilsson J (2013) Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression. J Cell Sci 126(Pt 5):1086–1092. doi: 10.1242/jcs.122481 PubMedCrossRefGoogle Scholar
  93. Kuijt TE, Omerzu M, Saurin AT, Kops GJ (2014) Conditional targeting of MAD1 to kinetochores is sufficient to reactivate the spindle assembly checkpoint in metaphase. Chromosoma 123(5):471–480. doi: 10.1007/s00412-014-0458-9 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kwiatkowski N, Jelluma N, Filippakopoulos P, Soundararajan M, Manak MS, Kwon M, Choi HG, Sim T, Deveraux QL, Rottmann S, Pellman D, Shah JV, Kops GJ, Knapp S, Gray NS (2010) Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol 6(5):359–368. doi: 10.1038/nchembio.345 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kwon YG, Lee SY, Choi Y, Greengard P, Nairn AC (1997) Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proc Natl Acad Sci U S A 94(6):2168–2173PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lampson MA, Cheeseman IM (2011) Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol 21(3):133–140. doi: 10.1016/j.tcb.2010.10.007 PubMedCrossRefGoogle Scholar
  97. Lampson MA, Kapoor TM (2005) The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nat Cell Biol 7(1):93–98. doi: 10.1038/ncb1208 PubMedCrossRefGoogle Scholar
  98. Lampson MA, Renduchitala K, Khodjakov A, Kapoor TM (2004) Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol 6(3):232–237. doi: 10.1038/ncb1102 PubMedCrossRefGoogle Scholar
  99. Lan W, Zhang X, Kline-Smith SL, Rosasco SE, Barrett-Wilt GA, Shabanowitz J, Hunt DF, Walczak CE, Stukenberg PT (2004) Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol: CB 14(4):273–286. doi: 10.1016/j.cub.2004.01.055 PubMedCrossRefGoogle Scholar
  100. Lauze E, Stoelcker B, Luca FC, Weiss E, Schutz AR, Winey M (1995) Yeast spindle pole body duplication gene MPS1 encodes an essential dual specificity protein kinase. EMBO J 14(8):1655–1663PubMedPubMedCentralGoogle Scholar
  101. Lenart P, Petronczki M, Steegmaier M, Di Fiore B, Lipp JJ, Hoffmann M, Rettig WJ, Kraut N, Peters JM (2007) The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr Biol: CB 17(4):304–315. doi: 10.1016/j.cub.2006.12.046 PubMedCrossRefGoogle Scholar
  102. Lischetti T, Nilsson J (2015) Regulation of mitotic progression by the spindle assembly checkpoint. Mol Cell Oncol 2(1):e970484. doi: 10.4161/23723548.2014.970484 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Liu D, Davydenko O, Lampson MA (2012) Polo-like kinase-1 regulates kinetochore-microtubule dynamics and spindle checkpoint silencing. J Cell Biol 198(4):491–499. doi: 10.1083/jcb.201205090 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Liu D, Vader G, Vromans MJ, Lampson MA, Lens SM (2009) Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323(5919):1350–1353. doi: 10.1126/science.1167000 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Liu D, Vleugel M, Backer CB, Hori T, Fukagawa T, Cheeseman IM, Lampson MA (2010) Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Biol 188(6):809–820. doi: 10.1083/jcb.201001006 PubMedPubMedCentralCrossRefGoogle Scholar
  106. London N, Ceto S, Ranish JA, Biggins S (2012) Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr Biol: CB 22(10):900–906. doi: 10.1016/j.cub.2012.03.052 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Losada A, Hirano M, Hirano T (2002) Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev 16(23):3004–3016. doi: 10.1101/gad.249202 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Maciejowski J, George KA, Terret ME, Zhang C, Shokat KM, Jallepalli PV (2010) Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J Cell Biol 190(1):89–100. doi: 10.1083/jcb.201001050 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Maldonado M, Kapoor TM (2011) Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation. Nat Cell Biol 13(4):475–482. doi: 10.1038/ncb2223 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Maresca TJ, Salmon ED (2010) Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J Cell Sci 123(Pt 6):825–835. doi: 10.1242/jcs.064790 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Marquardt JR, Fisk HA (2016) ARHGEF17 sets the timer for retention of Mps1 at kinetochores. The Journal of cell biology 212(6):615–616. doi: 10.1083/jcb.201602060 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Marston AL (2015) Shugoshins: tension-sensitive pericentromeric adaptors safeguarding chromosome segregation. Mol Cell Biol 35(4):634–648. doi: 10.1128/Mcb.01176-14 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Mattison CP, Old WM, Steiner E, Huneycutt BJ, Resing KA, Ahn NG, Winey M (2007) Mps1 activation loop autophosphorylation enhances kinase activity. J Biol Chem 282(42):30553–30561. doi: 10.1074/jbc.M707063200 PubMedCrossRefGoogle Scholar
  114. Maure JF, Kitamura E, Tanaka TU (2007) Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism. Curr Biol: CB 17(24):2175–2182. doi: 10.1016/j.cub.2007.11.032 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Meadows JC, Shepperd LA, Vanoosthuyse V, Lancaster TC, Sochaj AM, Buttrick GJ, Hardwick KG, Millar JB (2011) Spindle checkpoint silencing requires association of PP1 to both Spc7 and kinesin-8 motors. Dev Cell 20(6):739–750. doi: 10.1016/j.devcel.2011.05.008 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Meiselbach H, Sticht H, Enz R (2006) Structural analysis of the protein phosphatase 1 docking motif: molecular description of binding specificities identifies interacting proteins. Chem Biol 13(1):49–59. doi: 10.1016/j.chembiol.2005.10.009 PubMedCrossRefGoogle Scholar
  117. Meppelink A, Kabeche L, Vromans MJ, Compton DA, Lens SM (2015) Shugoshin-1 balances Aurora B kinase activity via PP2A to promote chromosome bi-orientation. Cell reports 11(4):508–515. doi: 10.1016/j.celrep.2015.03.052 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Miller SA, Johnson ML, Stukenberg PT (2008) Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr Biol: CB 18(22):1785–1791. doi: 10.1016/j.cub.2008.11.007 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mo F, Zhuang X, Liu X, Yao PY, Qin B, Su Z, Zang J, Wang Z, Zhang J, Dou Z, Tian C, Teng M, Niu L, Hill DL, Fang G, Ding X, Fu C, Yao X (2016) Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol 12(4):226–232. doi: 10.1038/nchembio.2017 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Murnion ME, Adams RR, Callister DM, Allis CD, Earnshaw WC, Swedlow JR (2001) Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J Biol Chem 276(28):26656–26665. doi: 10.1074/jbc.M102288200 PubMedCrossRefGoogle Scholar
  121. Musacchio A (2015) The molecular biology of spindle assembly checkpoint signaling dynamics. Curr Biol: CB 25(20):R1002–R1018. doi: 10.1016/j.cub.2015.08.051 PubMedCrossRefGoogle Scholar
  122. Nagpal H, Fukagawa T (2016) Kinetochore assembly and function through the cell cycle. Chromosoma 125(4):645–659. doi: 10.1007/s00412-016-0608-3 PubMedCrossRefGoogle Scholar
  123. Nerusheva OO, Galander S, Fernius J, Kelly D, Marston AL (2014) Tension-dependent removal of pericentromeric shugoshin is an indicator of sister chromosome biorientation. Genes Dev 28(12):1291–1309. doi: 10.1101/gad.240291.114 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Niedzialkowska E, Wang F, Porebski PJ, Minor W, Higgins JM, Stukenberg PT (2012) Molecular basis for phosphospecific recognition of histone H3 tails by Survivin paralogues at inner centromeres. Mol Biol Cell 23(8):1457–1466. doi: 10.1091/mbc.E11-11-0904 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Nijenhuis W, Vallardi G, Teixeira A, Kops GJ, Saurin AT (2014) Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat Cell Biol 16(12):1257–1264. doi: 10.1038/ncb3065 PubMedCrossRefGoogle Scholar
  126. Nijenhuis W, von Castelmur E, Littler D, De Marco V, Tromer E, Vleugel M, van Osch MH, Snel B, Perrakis A, Kops GJ (2013) A TPR domain-containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B. J Cell Biol 201(2):217–231. doi: 10.1083/jcb.201210033 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Nishiyama T, Sykora MM, Huis in ‘t Veld PJ, Mechtler K, Peters JM (2013) Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. Proc Natl Acad Sci U S A 110(33):13404–13409. doi: 10.1073/pnas.1305020110
  128. O’Connor A, Maffini S, Rainey MD, Kaczmarczyk A, Gaboriau D, Musacchio A, Santocanale C (2015) Requirement for PLK1 kinase activity in the maintenance of a robust spindle assembly checkpoint. Biol Open 5(1):11–19. doi: 10.1242/bio.014969 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Ohi R, Sapra T, Howard J, Mitchison TJ (2004) Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell 15(6):2895–2906. doi: 10.1091/mbc.E04-02-0082 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Ohkura H, Adachi Y, Kinoshita N, Niwa O, Toda T, Yanagida M (1988) Cold-sensitive and caffeine-supersensitive mutants of the Schizosaccharomyces pombe dis genes implicated in sister chromatid separation during mitosis. EMBO J 7(5):1465–1473PubMedPubMedCentralGoogle Scholar
  131. Ohkura H, Kinoshita N, Miyatani S, Toda T, Yanagida M (1989) The fission yeast disZ+ gene required for chromosome disjoining encodes one of two putative type 1 protein phosphatases. Cell 57:997–1007PubMedCrossRefGoogle Scholar
  132. Pesenti ME, Weir JR, Musacchio A (2016) Progress in the structural and functional characterization of kinetochores. Curr Opin Struct Biol 37:152–163. doi: 10.1016/j.sbi.2016.03.003 PubMedCrossRefGoogle Scholar
  133. Peters U, Cherian J, Kim JH, Kwok BH, Kapoor TM (2006) Probing cell-division phenotype space and Polo-like kinase function using small molecules. Nat Chem Biol 2(11):618–626. doi: 10.1038/nchembio826 PubMedCrossRefGoogle Scholar
  134. Petrovic A, Keller J, Liu Y, Overlack K, John J, Dimitrova YN, Jenni S, van Gerwen S, Stege P, Wohlgemuth S, Rombaut P, Herzog F, Harrison SC, Vetter IR, Musacchio A (2016) Structure of the MIS12 complex and molecular basis of its interaction with CENP-C at human kinetochores. Cell 167(4):1028–1040, e1015. doi: 10.1016/j.cell.2016.10.005
  135. Pinsky BA, Kung C, Shokat KM, Biggins S (2006) The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nat Cell Biol 8(1):78–83. doi: 10.1038/ncb1341 PubMedCrossRefGoogle Scholar
  136. Pinsky BA, Nelson CR, Biggins S (2009) Protein phosphatase 1 regulates exit from the spindle checkpoint in budding yeast. Curr Biol: CB 19(14):1182–1187. doi: 10.1016/j.cub.2009.06.043 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Poch O, Schwob E, de Fraipont F, Camasses A, Bordonne R, Martin RP (1994) RPK1, an essential yeast protein kinase involved in the regulation of the onset of mitosis, shows homology to mammalian dual-specificity kinases. Mol Gen Genet: MGG 243(6):641–653PubMedCrossRefGoogle Scholar
  138. Porter IM, Schleicher K, Porter M, Swedlow JR (2013) Bod1 regulates protein phosphatase 2A at mitotic kinetochores. Nat Commun 4:2677. doi: 10.1038/ncomms3677 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Posch M, Khoudoli GA, Swift S, King EM, Deluca JG, Swedlow JR (2010) Sds22 regulates aurora B activity and microtubule-kinetochore interactions at mitosis. J Cell Biol 191(1):61–74. doi: 10.1083/jcb.200912046 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Qian J, Beullens M, Lesage B, Bollen M (2013) Aurora B defines its own chromosomal targeting by opposing the recruitment of the phosphatase scaffold Repo-Man. Curr Biol: CB 23(12):1136–1143. doi: 10.1016/j.cub.2013.05.017 PubMedCrossRefGoogle Scholar
  141. Raaijmakers JA, Tanenbaum ME, Maia AF, Medema RH (2009) RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment. J Cell Sci 122(Pt 14):2436–2445. doi: 10.1242/jcs.051912 PubMedCrossRefGoogle Scholar
  142. Rago F, Gascoigne KE, Cheeseman IM (2015) Distinct organization and regulation of the outer kinetochore KMN network downstream of CENP-C and CENP-T. Curr Biol: CB 25(5):671–677. doi: 10.1016/j.cub.2015.01.059 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Rosenberg JS, Cross FR, Funabiki H (2011) KNL1/Spc105 recruits PP1 to silence the spindle assembly checkpoint. Curr Biol: CB 21(11):942–947. doi: 10.1016/j.cub.2011.04.011 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Salimian KJ, Ballister ER, Smoak EM, Wood S, Panchenko T, Lampson MA, Black BE (2011) Feedback control in sensing chromosome biorientation by the Aurora B kinase. Curr Biol: CB 21(13):1158–1165. doi: 10.1016/j.cub.2011.06.015 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28(17):2511–2531. doi: 10.1038/emboj.2009.173 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Santaguida S, Tighe A, D’Alise AM, Taylor SS, Musacchio A (2010) Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J Cell Biol 190(1):73–87. doi: 10.1083/jcb.201001036 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Santaguida S, Vernieri C, Villa F, Ciliberto A, Musacchio A (2011) Evidence that Aurora B is implicated in spindle checkpoint signalling independently of error correction. EMBO J 30(8):1508–1519. doi: 10.1038/emboj.2011.70 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Sassoon I, Severin FF, Andrews PD, Taba MR, Kaplan KB, Ashford AJ, Stark MJ, Sorger PK, Hyman AA (1999) Regulation of Saccharomyces cerevisiae kinetochores by the type 1 phosphatase Glc7p. Genes Dev 13(5):545–555PubMedPubMedCentralCrossRefGoogle Scholar
  149. Saurin AT, van der Waal MS, Medema RH, Lens SM, Kops GJ (2011) Aurora B potentiates Mps1 activation to ensure rapid checkpoint establishment at the onset of mitosis. Nat Commun 2:316. doi: 10.1038/ncomms1319 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Schmidt JC, Kiyomitsu T, Hori T, Backer CB, Fukagawa T, Cheeseman IM (2010) Aurora B kinase controls the targeting of the Astrin-SKAP complex to bioriented kinetochores. J Cell Biol 191(2):269–280. doi: 10.1083/jcb.201006129 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Sessa F, Mapelli M, Ciferri C, Tarricone C, Areces LB, Schneider TR, Stukenberg PT, Musacchio A (2005) Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 18(3):379–391. doi: 10.1016/j.molcel.2005.03.031 PubMedCrossRefGoogle Scholar
  152. Shao H, Huang Y, Zhang L, Yuan K, Chu Y, Dou Z, Jin C, Garcia-Barrio M, Liu X, Yao X (2015) Spatiotemporal dynamics of Aurora B-PLK1-MCAK signaling axis orchestrates kinetochore bi-orientation and faithful chromosome segregation. Sci Rep 5:12204. doi: 10.1038/srep12204 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Shepperd LA, Meadows JC, Sochaj AM, Lancaster TC, Zou J, Buttrick GJ, Rappsilber J, Hardwick KG, Millar JB (2012) Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr Biol: CB 22(10):891–899. doi: 10.1016/j.cub.2012.03.051 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Sivakumar S, Janczyk PL, Qu Q, Brautigam CA, Stukenberg PT, Yu H, Gorbsky GJ (2016) The human SKA complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase 1 to kinetochores. Elife 5. doi: 10.7554/eLife.12902
  155. Sliedrecht T, Zhang C, Shokat KM, Kops GJ (2010) Chemical genetic inhibition of Mps1 in stable human cell lines reveals novel aspects of Mps1 function in mitosis. PLoS ONE 5(4):e10251. doi: 10.1371/journal.pone.0010251 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Storchova Z, Becker JS, Talarek N, Kogelsberger S, Pellman D (2011) Bub1, Sgo1, and Mps1 mediate a distinct pathway for chromosome biorientation in budding yeast. Mol Biol Cell 22(9):1473–1485. doi: 10.1091/mbc.E10-08-0673 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Stucke VM, Sillje HH, Arnaud L, Nigg EA (2002) Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J 21(7):1723–1732. doi: 10.1093/emboj/21.7.1723 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Suijkerbuijk SJ, Vleugel M, Teixeira A, Kops GJ (2012) Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell 23(4):745–755. doi: 10.1016/j.devcel.2012.09.005 PubMedCrossRefGoogle Scholar
  159. Sumara I, Gimenez-Abian JF, Gerlich D, Hirota T, Kraft C, de la Torre C, Ellenberg J, Peters JM (2004) Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr Biol: CB 14(19):1712–1722. doi: 10.1016/j.cub.2004.09.049 PubMedCrossRefGoogle Scholar
  160. Sundin LJ, Guimaraes GJ, Deluca JG (2011) The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis. Mol Biol Cell 22(6):759–768. doi: 10.1091/mbc.E10-08-0671 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Tanaka K, Kitamura E, Kitamura Y, Tanaka TU (2007) Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J Cell Biol 178(2):269–281. doi: 10.1083/jcb.200702141 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Tanaka TU, Rachidi N, Janke C, Pereira G, Galova M, Schiebel E, Stark MJ, Nasmyth K (2002) Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108(3):317–329PubMedCrossRefGoogle Scholar
  163. Tang NH, Toda T (2015) Alp7/TACC recruits kinesin-8-PP1 to the Ndc80 kinetochore protein for timely mitotic progression and chromosome movement. J Cell Sci 128(2):354–363. doi: 10.1242/jcs.160036 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Tanno Y, Susumu H, Kawamura M, Sugimura H, Honda T, Watanabe Y (2015) The inner centromere-shugoshin network prevents chromosomal instability. Science 349(6253):1237–1240. doi: 10.1126/science.aaa2655 PubMedCrossRefGoogle Scholar
  165. Trinkle-Mulcahy L, Andersen J, Lam YW, Moorhead G, Mann M, Lamond AI (2006) Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability. J Cell Biol 172(5):679–692. doi: 10.1083/jcb.200508154 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Trinkle-Mulcahy L, Andrews PD, Wickramasighe S, Sleeman J, Prescott A, Lam YW, Lyon C, Swedlow JR, Lamond AI (2003) Time-lapse imaging reveals dynamic relocalization of PP1 throughout the mammalian cell cycle. Mol Bio Cell 14:107–117. doi: 10.1091/mbc.E02- CrossRefGoogle Scholar
  167. Tsukahara T, Tanno Y, Watanabe Y (2010) Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature 467(7316):719–723. doi: 10.1038/nature09390 PubMedCrossRefGoogle Scholar
  168. Vader G, Cruijsen CW, van Harn T, Vromans MJ, Medema RH, Lens SM (2007) The chromosomal passenger complex controls spindle checkpoint function independent from its role in correcting microtubule kinetochore interactions. Mol Biol Cell 18(11):4553–4564. doi: 10.1091/mbc.E07-04-0328 PubMedPubMedCentralCrossRefGoogle Scholar
  169. van der Waal MS, Saurin AT, Vromans MJ, Vleugel M, Wurzenberger C, Gerlich DW, Medema RH, Kops GJ, Lens SM (2012) Mps1 promotes rapid centromere accumulation of Aurora B. EMBO Rep 13(9):847–854. doi: 10.1038/embor.2012.93 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Vanoosthuyse V, Hardwick KG (2009) A novel protein phosphatase 1-dependent spindle checkpoint silencing mechanism. Curr Biol: CB 19(14):1176–1181. doi: 10.1016/j.cub.2009.05.060 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Vigneron S, Prieto S, Bernis C, Labbe JC, Castro A, Lorca T (2004) Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell 15(10):4584–4596. doi: 10.1091/mbc.E04-01-0051 PubMedPubMedCentralCrossRefGoogle Scholar
  172. von Schubert C, Cubizolles F, Bracher JM, Sliedrecht T, Kops GJ, Nigg EA (2015) Plk1 and Mps1 cooperatively regulate the spindle assembly checkpoint in human cells. Cell Rep 12(1):66–78. doi: 10.1016/j.celrep.2015.06.007 CrossRefGoogle Scholar
  173. Wakula P, Beullens M, Ceulemans H, Stalmans W, Bollen M (2003) Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. J Biol Chem 278(21):18817–18823. doi: 10.1074/jbc.M300175200 PubMedCrossRefGoogle Scholar
  174. Wang E, Ballister ER, Lampson MA (2011a) Aurora B dynamics at centromeres create a diffusion-based phosphorylation gradient. J Cell Biol 194(4):539–549. doi: 10.1083/jcb.201103044 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Wang F, Dai J, Daum JR, Niedzialkowska E, Banerjee B, Stukenberg PT, Gorbsky GJ, Higgins JM (2010) Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330(6001):231–235. doi: 10.1126/science.1189435 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Wang F, Ulyanova NP, van der Waal MS, Patnaik D, Lens SM, Higgins JM (2011b) A positive feedback loop involving Haspin and Aurora B promotes CPC accumulation at centromeres in mitosis. Curr Biol: CB 21(12):1061–1069. doi: 10.1016/j.cub.2011.05.016 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Wang J, Wang Z, Yu T, Yang H, Virshup DM, Kops GJ, Lee SH, Zhou W, Li X, Xu W, Rao Z (2016) Crystal structure of a PP2A B56-BubR1 complex and its implications for PP2A substrate recruitment and localization. Protein Cell 7(7):516–526. doi: 10.1007/s13238-016-0283-4 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Wei RR, Al-Bassam J, Harrison SC (2007) The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 14(1):54–59. doi: 10.1038/nsmb1186 PubMedCrossRefGoogle Scholar
  179. Weir JR, Faesen AC, Klare K, Petrovic A, Basilico F, Fischbock J, Pentakota S, Keller J, Pesenti ME, Pan D, Vogt D, Wohlgemuth S, Herzog F, Musacchio A (2016) Insights from biochemical reconstitution into the architecture of human kinetochores. Nature 537(7619):249–253. doi: 10.1038/nature19333 PubMedCrossRefGoogle Scholar
  180. Weiss E, Winey M (1996) The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132(1–2):111–123PubMedCrossRefGoogle Scholar
  181. Welburn JP, Grishchuk EL, Backer CB, Wilson-Kubalek EM, Yates JR 3rd, Cheeseman IM (2009) The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev Cell 16(3):374–385. doi: 10.1016/j.devcel.2009.01.011 PubMedPubMedCentralCrossRefGoogle Scholar
  182. Welburn JP, Vleugel M, Liu D, Yates JR 3rd, Lampson MA, Fukagawa T, Cheeseman IM (2010) Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell 38(3):383–392. doi: 10.1016/j.molcel.2010.02.034 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Westermann S, Wang HW, Avila-Sakar A, Drubin DG, Nogales E, Barnes G (2006) The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440(7083):565–569. doi: 10.1038/nature04409 PubMedCrossRefGoogle Scholar
  184. Wilson-Kubalek EM, Cheeseman IM, Yoshioka C, Desai A, Milligan RA (2008) Orientation and structure of the Ndc80 complex on the microtubule lattice. J Cell Biol 182(6):1055–1061. doi: 10.1083/jcb.200804170 PubMedPubMedCentralCrossRefGoogle Scholar
  185. Winey M, Goetsch L, Baum P, Byers B (1991) MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 114(4):745–754PubMedCrossRefGoogle Scholar
  186. Wu JQ, Guo JY, Tang W, Yang CS, Freel CD, Chen C, Nairn AC, Kornbluth S (2009) PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation. Nat Cell Biol 11(5):644–651. doi: 10.1038/ncb1871 PubMedPubMedCentralCrossRefGoogle Scholar
  187. Xu P, Raetz EA, Kitagawa M, Virshup DM, Lee SH (2013) BUBR1 recruits PP2A via the B56 family of targeting subunits to promote chromosome congression. Biol Open 2(5):479–486. doi: 10.1242/bio.20134051 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Yamagishi Y, Honda T, Tanno Y, Watanabe Y (2010) Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330(6001):239–243. doi: 10.1126/science.1194498 PubMedCrossRefGoogle Scholar
  189. Yamagishi Y, Yang CH, Tanno Y, Watanabe Y (2012) MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol 14(7):746–752. doi: 10.1038/ncb2515 PubMedCrossRefGoogle Scholar
  190. Yamano H, Ishii K, Yanagida M (1994) Phosphorylation of dis2 protein phosphatase at the C-terminal cdc2 consensus and its potential role in cell cycle regulation. EMBO J 13(22):5310–5318PubMedPubMedCentralGoogle Scholar
  191. Yasui Y, Urano T, Kawajiri A, Nagata K, Tatsuka M, Saya H, Furukawa K, Takahashi T, Izawa I, and Inagaki M (2004) Autophosphorylation of a newly identified site of Aurora-B is indispensable for cytokinesis. J Biol Chem 279(13):12997–13003. doi: 10.1074/jbc.M311128200
  192. Yoshida MM, Ting L, Gygi SP, Azuma Y (2016) SUMOylation of DNA topoisomerase IIalpha regulates histone H3 kinase Haspin and H3 phosphorylation in mitosis. J Cell Biol 213(6):665–678. doi: 10.1083/jcb.201511079 PubMedPubMedCentralCrossRefGoogle Scholar
  193. Zaytsev AV, Segura-Pena D, Godzi M, Calderon A, Ballister ER, Stamatov R, Mayo AM, Peterson L, Black BE, Ataullakhanov FI, Lampson MA (1064) Grishchuk EL (2016) bistability of a coupled Aurora B kinase-phosphatase system in cell division. Elife 5:e10644. doi: 10.7554/eLife.4 Google Scholar
  194. Zhang X, Lan W, Ems-McClung SC, Stukenberg PT, Walczak CE (2007) Aurora B phosphorylates multiple sites on mitotic centromere-associated kinesin to spatially and temporally regulate its function. Mol Biol Cell 18(9):3264–3276. doi: 10.1091/mbc.E07-01-0086 PubMedPubMedCentralCrossRefGoogle Scholar
  195. Zhu T, Dou Z, Qin B, Jin C, Wang X, Xu L, Wang Z, Zhu L, Liu F, Gao X, Ke Y, Wang Z, Aikhionbare F, Fu C, Ding X, and Yao X (2013) Phosphorylation of microtubule-binding protein Hec1 by mitotic kinase aurora B specifies spindle checkpoint kinase Mps1 signaling at the kinetochore. J Biol Chem 288(50):36149–36159 doi: 10.1074/jbc.M113.507970

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giulia Vallardi
    • 1
  • Marilia Henriques Cordeiro
    • 1
  • Adrian Thomas Saurin
    • 1
    Email author
  1. 1.Division of Cancer Research, School of Medicine, Jacqui Wood Cancer CentreNinewells Hospital and Medical School, University of DundeeDundeeUK

Personalised recommendations