Advertisement

Metal Allergy pp 443-466 | Cite as

Metal Allergy: Titanium

  • Curt Hamann
Chapter

Abstract

Titanium is considered to be biocompatible because of a number of favorable theoretical properties: resistance to corrosion, bio-inertness, capacity for osseointegration, high fatigue limit, and nonferromagnetism. Consequently, it has already been widely used in medical and dental implants, and projections suggest that its use in such bioapplications will only increase. Other routes of exposure include food and personal care products. Because few diagnosed cases of type IV reactions to titanium have been reported, its allergenic status has been controversial. There are reasons, however, to expect that cases are being underreported. Not only are cases of hypersensitivity likely under-recognized, in vivo diagnostic testing (patch testing) for titanium hypersensitivity has been conducted with water-insoluble compounds that do not penetrate the stratum corneum. Not surprisingly, the results of such tests have overwhelmingly been negative. None of the issues surrounding the allergenicity of titanium will likely be resolved until diagnostic testing for type IV hypersensitivity is conducted with a stable, solvent-soluble, protein-reactive titanium salt that penetrates the skin.

References

  1. 1.
    Oshida Y. Bioscience and bioengineering of titanium materials. 2nd ed. Oxford: Elsevier; 2013. p. 1–7.CrossRefGoogle Scholar
  2. 2.
    Guy R, Hostynek JJ, Hinz RS, Lorence CR. Metals and the skin - topical effects and systemic absorption. New York: Marcel Dekker; 1999.CrossRefGoogle Scholar
  3. 3.
    Oluwajana F, Walmsley AD. Titanium alloy removable partial denture framework in a patient with a metal allergy: a case study. Br Dent J. 2012;213:123–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Steinemann SG. Titanium--the material of choice? Periodontol 2000. 1998;17:7–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Thomas P, Schuh A, Ring J, Thomsen M. Orthopedic surgical implants and allergies. Joint statement by the implant allergy working group (AK 20) of the DGOOC (German association of orthopedics and orthopedics surgery), DKG (German contact dermatitis research group) and DGAKI (German society for allergology and clinical immunology). Orthopade. 2008;37:75–88.CrossRefPubMedGoogle Scholar
  6. 6.
    Thyssen JP, Johansen JD, Menné T, Lidén C, Bruze M, White IR. Hypersensitivity reactions from metallic implants: a future challenge that needs to be addressed. Br J Dermatol. 2010;162:235–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Maspero C, Giannini L, Galbiati G, Nolet F, Esposito L, Farronato G. Titanium orthodontic appliances for allergic patients. Minerva Stomatol. 2014;63:403–10.PubMedGoogle Scholar
  8. 8.
    Ortlief M. White giant or white dwarf? Particle size distribution measurements of TiO2. GIT Lab J Eur. 2010;10:42–3.Google Scholar
  9. 9.
    U.S. Geological Survey. Titanium - light, strong, and white. Fact Sheet 2013–3059. August 2013. www.minerals.usg.gov/minerals/pubs/commodity/titanium. Accessed Feb 2106.
  10. 10.
    Selloni AA. Crystal growth: anatase shows its reactive side. Nat Mater. 7:613–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Wood MM, Warshaw EM. Hypersensitivity reactions to titanium: diagnosis and management. Dermatitis. 2015;26:7–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants--a review. Prog Mater Sci. 2009;54:397–425.CrossRefGoogle Scholar
  13. 13.
    Titanium Grade Overview. www.supraalloys.com/titanium-grades.php. Accessed Nov 2016.
  14. 14.
    Ito A, Okazaki Y, Tateishi T, Ito Y. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys. J Biomed Mater Res. 1995;29:893–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Okazaki Y, Ito Y, Tateishi T. Effects of heat treatment on mechanical properties and corrosion fatigue strength in physiological saline solution of new titanium alloys for medical implants. Mater Trans JIM. 1996;37:843–9.CrossRefGoogle Scholar
  16. 16.
    Okazaki Y, Rao S, Ito Y, Tateishi T. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials. 1998;19:1197–215.PubMedCrossRefGoogle Scholar
  17. 17.
    Reytman L, Braitbard O, Tshuva EY. Highly cytotoxic vanadium(v) complexes of salan ligands; insights on the role of hydrolysis. Dalton Trans. 2012;41:5241–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Coulter I, Lee M, Zakaria R, Barrett C. Pin site allergic contact dermatitis: an unusual complication of halo fixation. Br J Neurosurg. 2012;26:566–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Asemota E, Scheman AJ, Brod BA. Hypersensitivity reactions to metallic implants containing vanadium. Dermatitis. 2016;27:387–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Oliveira V, Chaves RR, Bertazzoli R, Caram R. Preparation and characterization of Ti-Al-Nb alloys for orthopedic implants. Braz J Chem Eng. 1998;15:326–33.CrossRefGoogle Scholar
  21. 21.
    Chang J-D. Future bearing surfaces in total hip arthroplasty. Clin Orthop Surg. 2014;6:110–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Windecker S, Mayer I, De Pasquale G, Maier W, Dirsch O, De Groot P, Wu YP, Noll G, Leskosek B, Meier B, Hess OM, Working Group on Novel Surface Coating of Biomedical Devices (SCOL). Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation. 2001;104:928–33.PubMedCrossRefGoogle Scholar
  23. 23.
    Thienpont E. Titanium niobium nitride knee implants are not inferior to chrome cobalt components for primary total knee arthroplasty. Arch Orthop Trauma Surg. 2015;135:1749–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Lim HP, Lee KM, Koh YI, Park SW. Allergic contact stomatitis caused by a titanium nitride-coated implant abutment: a clinical report. J Prosthet Dent. 2012;108:209–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Tamura Y, Yokoyama A, Watari F, Uo M, Kawasaki T. Mechanical properties of surface nitrided titanium for abrasion resistant implant materials. Mater Trans. 2002;43:3043–51.CrossRefGoogle Scholar
  26. 26.
    Oshida Y. Bioscience and bioengineering of titanium materials. 2nd ed. Oxford: Elsevier; 2013. p. 9–34.CrossRefGoogle Scholar
  27. 27.
    Gravina MA, Canavarro C, Elias CN, das Gracas M, Brunharo IH, Quintão CC. Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: microscopic surface appraisal and metallurgical characteristics. Dent Press J Orthod. 2014;19:69–76.CrossRefGoogle Scholar
  28. 28.
    Es-Souni M, Es-Souni M, Fischer-Brandies H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem. 2005;381:557–67.PubMedCrossRefGoogle Scholar
  29. 29.
    Basko-Plluska JL, Thyssen JP, Schalock PC. Cutaneous and systemic hypersensitivity reactions to metallic implants. Dermatitis. 2011;22:65–79.PubMedGoogle Scholar
  30. 30.
    Oshida Y. Bioscience and bioengineering of titanium materials. 2nd ed. Oxford: Elsevier; 2013. p. 87–115.CrossRefGoogle Scholar
  31. 31.
    Khan MA, Williams RL, Williams DF. The corrosion behaviour of Ti–6Al–4V, Ti–6Al–7Nb and Ti–13Nb–13Zr in protein solutions. Biomaterials. 1999;20:631–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Oshida Y. Bioscience and bioengineering of titanium materials. 2nd ed. Oxford: Elsevier; 2013. p. 169–223.CrossRefGoogle Scholar
  33. 33.
    Bothe R, Beaton LE, Davenport HA. Reaction of bone to multiple metallic implants. Surg Gynecol Obstet. 1940;71:598–602.Google Scholar
  34. 34.
    Raines AL, Olivares-Navarrete R, Wieland M, Cochran DL, Schwartz Z, Boyan BD. Regulation of angiogenesis during osseointegration by titanium surface microstructure and energy. Biomaterials. 2010;31:4909–17.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gostin PF, Helth A, Voss A, Sueptitz R, Calin M, Eckert J, Gebert A. Surface treatment, corrosion behavior, and apatite-forming ability of Ti-45Nb implant alloy. J Biomed Mater Res B Appl Biomater. 2013;101:269–78.PubMedCrossRefGoogle Scholar
  36. 36.
    Gittens RA, Olivares-Navarrete R, Tannenbaum R, Boyan BD, Schwartz Z. Electrical implications of corrosion for osseointegration of titanium implants. J Dent Res. 2011;90:1389–97.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Rodrigues DC, Urban RM, Jacobs JJ, Gilbert JL. In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants. J Biomed Mater Res B Appl Biomater. 2009;88:206–19.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Woodman JL, Jacobs JJ, Galante JO, Urban RM. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: a long-term study. J Orthop Res. 1984;1:421–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Schliephake H, Lehmann H, Kunz U, Schmelzeisen R. Ultrastructural findings in soft tissues adjacent to titanium plates used in jaw fracture treatment. Int J Oral Maxillofac Surg. 1993;22:20–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Schliephake HRJ, Neukamp FW, Günay H. Release of titanium from screw implants. Z Dentistry Implantum. 1991;7:6–10.Google Scholar
  41. 41.
    Trépanier C P, Alan R. Effect of temperature and pH on corrosion resistance of nitinol. Proceedings of the international conference on shape memory and superelastic technologies (2004). Baden, Germany. Materials Park, Ohio, U.S.: ASM International; 2006. p. 261–366.Google Scholar
  42. 42.
    Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26:11–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Mutlu-Sagesen L, Ergun G, Karabulut E. Ion release from metal-ceramic alloys in three different media. Dent Mater J. 2011;30:598–610.PubMedCrossRefGoogle Scholar
  44. 44.
    Strietzel R, Hosch A, Kalbfleisch H, Buch D. In vitro corrosion of titanium. Biomaterials. 1998;19:1495–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Mikulewicz M, Chojnacka K, Woźniak B, Downarowicz P. Release of metal ions from orthodontic appliances: an in vitro study. Biol Trace Elem Res. 2012;146:272–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Koike M, Fujii H. In vitro assessment of corrosive properties of titanium as biomaterial. J Orofac Orthop. 2001;28:540–8.Google Scholar
  47. 47.
    Suito H, Iwawaki Y, Goto T, Tomotake Y, Ichikawa T. Oral factors affecting titanium elution and corrosion: an in vitro study using simulated body fluid. PLoS One. 2013;8:1–7.CrossRefGoogle Scholar
  48. 48.
    Bessho K, Fujimura K, Iizuka T. Experimental long-term study of titanium ions eluted from pure titanium miniplates. J Biomed Mater Res. 1995;29:901–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Khan M, Williams RL, Williams DF. In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials. 1996;17:2117–26.PubMedCrossRefGoogle Scholar
  50. 50.
    Frisken KW, Dandie GW, Lugowski S, Jordan G. A study of titanium release into body organs following the insertion of single threaded screw implants into the mandibles of sheep. Aust Dent J. 2002;47:214–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Olmedo DG, Duffo G, Cabrini RL, Guglielmotti MB. Local effect of titanium implant corrosion: an experimental study in rats. Int J Oral Maxillofac Surg. 2008;37:1032–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Richardson TD, Pineda SJ, Strenge KB, van Fleet TA, Macgregor M, Milbrandt JC, Espinosa JA, Freitag P. Serum titanium levels after instrumented spinal arthrodesis. Spine. 2008;33:792–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Jacobs J, Silverston C, Hallab N, Skipor A, Patterson L, Black J, Galante J. Metal release and excretion from cementless titanium alloy total knee replacements. Clin Orthop. 1999;358:173–80.CrossRefGoogle Scholar
  54. 54.
    Kretzer JP, Jakubowitz E, Krachler M, Thomsen M, Heisel C. Metal release and corrosion effects of modular neck total hip arthroplasty. Int Orthop. 2009;33:1531–6.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kasai Y, Lida R, Uchida A. Metal concentrations in the serum and hair of patients with titanium alloy spinal implants. Spine. 2003;25:1320–6.Google Scholar
  56. 56.
    Cundy TP, Antoniou G, Sutherland LM, Freeman BJC, Cundy PJ. Serum titanium, niobium, and aluminum levels after instrumented spinal arthrodesis in children. Spine. 2013;38:564–70.PubMedCrossRefGoogle Scholar
  57. 57.
    Nuevo-Ordóñez Y, Montes-Bayón M, Blanco-González E, Paz-Aparicio J, Raimundez JD, Tejerina JM, Peña MA, Sanz-Medel A. Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels. Anal Bioanal Chem. 2011;401:2747–54.PubMedCrossRefGoogle Scholar
  58. 58.
    Ipach I, Schafer R, Mittag F, Leichtle C, Wolf P, Kluba T. The development of whole blood titanium levels after instrumented spinal fusion - is there a correlation between the number of fused segments and titanium levels? BMC Musculoskelet Disord. 2012;13:159.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Jacobs JJ, Skipor AK, Patterson LM, Hallab NJ, Paprosky WG, Black J, Galante JO. Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study. J Bone Joint Surg Am. 1998;80:1447–58.PubMedCrossRefGoogle Scholar
  60. 60.
    Leopold SS, Berger RA, Patterson L, Skipor AK, Urban RM, Jacobs JJ. Serum titanium level for diagnosis of a failed, metal-backed patellar component. J Arthroplast. 2000;15:938–43.CrossRefGoogle Scholar
  61. 61.
    Meningaud J-P, Poupon J, Bertrand J-C, Chenevier C, Galliot-Guilley M, Guilbert F. Dynamic study about metal release from titanium miniplates in maxillofacial surgery. Int J Oral Maxillofac Surg. 2001;30:185–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Fage S, Muris J, Jakobsen SS, Thyssen JP. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis. 2016;74:323–45.PubMedCrossRefGoogle Scholar
  63. 63.
    Chang J-C, Oshida Y, Gregory RL, Andres CJ, Barco TM, Brown DT. Electrochemical study on microbiology-related corrosion of metallic dental materials. Biomed Mater Eng. 2003;13:281–95.PubMedGoogle Scholar
  64. 64.
    Rodrigues DC, Valderrama P, Wilson T, Palmer K, Thomas A, Sridhar S, Adapalli A, Burbano M, Wadhwani C. Titanium corrosion mechanisms in the oral environment: a retrieval study. Materials. 2013;6:5258–74.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Nuevo-Ordonez Y, Montes-Bayon M, Blanco Gonzalez E, Sanz-Medel A. Titanium preferential binding sites in human serum transferrin at physiological concentrations. Metallomics. 2011;3:1297–303.PubMedCrossRefGoogle Scholar
  66. 66.
    Messori L, Orioli P, Banholzer V, Pais I, Paolo Z. Formation of titanium(IV) transferrin by reaction of human serum apotransferrin with titanium complexes. FEBS Lett. 1999;442:157–61.PubMedCrossRefGoogle Scholar
  67. 67.
    Weingart D, Steinemann S, Schilli W, Strub JR, Hellerich U, Assenmacher J, Simpson J. Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. Int J Oral Maxillofacl Surg. 1994;23:450–2.CrossRefGoogle Scholar
  68. 68.
    Hillman G, Donath K. Licht und elktronmicroskopische untersuchung zur biostabilität dental titanimplantate. Z Zahnaerztle Implantol. 1991;7:170–7.Google Scholar
  69. 69.
    Vamanu CI, Høl PJ, Allouni ZE, Elsayed S, Gjerdet NR. Formation of potential titanium antigens based on protein binding to titanium dioxide nanoparticles. Int J Nanomedicine. 2008;3:69–74.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    El-Said KS, Ali EM, Kanehira K, Taniguchi A. Molecular mechanism of DNA damage induced by titanium dioxide nanoparticles in toll-like receptor 3 or 4 expressing human hepatocarcinoma cell lines. J Nanobiotechnol. 2014;12:48.CrossRefGoogle Scholar
  71. 71.
    Schalock PC, Menné T, Johansen JD, Taylor JS, Maibach HI, Liden C, Bruze M, Thyssen JP. Hypersensitivity reactions to metallic implants - diagnostic algorithm and suggested patch test series for clinical use. Contact Dermatitis. 2012;66:4–19.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Davis MD, Wang MZ, Yiannias JA, Keeling JH, Connolly SM, Richardson DM, Farmer SA. Patch testing with a large series of metal allergens: findings from more than 1,000 patients in one decade at Mayo Clinic. Dermatitis. 2011;22:256–71.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Reed K, Davis MDP, Nakamura K, Hanson L, Richardson DM. Retrospective evaluation of patch testing before or after metal device implantation. Arch Dermatol. 2008;144:999–1007.PubMedCrossRefGoogle Scholar
  74. 74.
    Lhotka CG, Szekeres T, Fritzer-Szekeres M, Schwarz G, Steffan I, Maschke M, Dubsky G, Kremser M, Zweymuller K. Are allergic reactions to skin clips associated with delayed wound healing? Am J Surg. 1998;176:320–3.PubMedCrossRefGoogle Scholar
  75. 75.
    Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Ski Physiol. 1999;12:247–56.CrossRefGoogle Scholar
  76. 76.
    Bjorkner B, Bruze M, Moller H. High frequency of contact allergy to gold sodium thiosulfate. An indication of gold allergy? Contact Dermatitis. 1994;30:144–51.PubMedCrossRefGoogle Scholar
  77. 77.
    Ikarashi Y, Momma J, Tsuchiya T, Nakamura A. Evaluation of skin sensitization potential of nickel, chromium, titanium and zirconium salts using guinea-pigs and mice. Biomaterials. 1996;17:2103–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Olsen KC, Barnes P, Morton K, Norris P. A patch test–positive titanium hypersensitivity reaction. Dermatitis. 2016;27:229–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Lalor PA, Revell PA, Gray AB, Wright S, Railton GT, Freeman MA. Sensitivity to titanium. A cause of implant failure? J Bone Joint Surg Br. 1991;73:25–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Elmorsi T. Synthesis of nano-titanium tannate as an adsorbent for crystal violet dye, kinetic and equilibrium isotherm studies. J Environ Prot. 2015;6:1454–71.CrossRefGoogle Scholar
  81. 81.
    Carrick V A. Titanium compounds and complexes as additives in lubricants (CA 2700650 C). Google Patents. 2015.Google Scholar
  82. 82.
    Chiou W. Compositions and methods for topical treatment of skin infection (US2008/0020059). Google Patents. 2008.Google Scholar
  83. 83.
    Nakayama M, Sasaki R, Ogino C, Tanaka T, Morita K, Umetsu M, Ohara S, Tan Z, Nishimura Y, Akasaka H, Sato K, Numako C, Takami S, Kondo A. Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiat Oncol. 2016;11:91.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Zhao X-G, Huang J-G, Wang B, Bi Q, Dong L-L, Liu X-J. Preparation of titanium peroxide and its selective adsorption property on cationic dyes. Appl Surf Sci. 2014;292:576–82.CrossRefGoogle Scholar
  85. 85.
    Fettig J, Taylor J, Sood A. Post-surgical allergic contact dermatitis to compound tincture of benzoin and association with reactions to fragrances and essential oils. Dermatitis. 2014;25:211–2.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhu Y, Wang X, Zhou Y, Zhao C, Yuan J, Wu Z, Wu S, Wang S. In situ formation of bioactive calcium titanate coatings on titanium screws for medical implants. RSC Adv. 2016;6:53182–7.CrossRefGoogle Scholar
  87. 87.
    Sicilia A, Cuesta S, Coma G, Arregui I, Guisasola C, Ruiz E, Maestro A. Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. Clin Oral Implants Res. 2008;19:823–35.PubMedCrossRefGoogle Scholar
  88. 88.
    Ita KK. Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics. 2015;7:90–105.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Hagan DB, Leng FJ, Smith PM, Snow M, Watson A. Antiperspirant compositions based on titanium salts. Int J Cosmet Sci. 1997;19:271–80.PubMedCrossRefGoogle Scholar
  90. 90.
    Masato K, Makoto K, Koji T, Valery P. Application of water-soluble titanium complexes as precursors for synthesis of titanium-containing oxides via aqueous solution processes. Bull Chem Soc Jpn. 2010;83:1285–308.CrossRefGoogle Scholar
  91. 91.
    Deng Y, Jiang Y, Hong Q, Zhou Z. Speciation of water-soluble titanium citrate: synthesis, structural, spectroscopic properties and biological relevance. Polyhedron. 2007;26:1561–9.CrossRefGoogle Scholar
  92. 92.
    Buettner KM, Collins JM, Valentine AM. Titanium(IV) and vitamin C: aqueous complexes of a bioactive form of Ti(IV). Inorg Chem. 2012;51:11030–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Darbre PD. Aluminium, antiperspirants and breast cancer. J Inorg Biochem. 2005;99:1912–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Basketter D, Whittle E, Monk B. Possible allergy to complex titanium salt. Contact Dermatitis. 2000;42:310–1.PubMedCrossRefGoogle Scholar
  95. 95.
    Honari G, Ellis S, Wilkoff B, Aronica M, Svensson L, Taylor J. Hypersensitivity reactions associated with endovascular devices. Contact Dermatitis. 2008;59:7–22.CrossRefPubMedGoogle Scholar
  96. 96.
    Ahmed SA, Gogal RM Jr, Walsh JE. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods. 1994;170:211–24.PubMedCrossRefGoogle Scholar
  97. 97.
    de Fries R, Mitsuhashi M. Quantification of mitogen induced human lymphocyte proliferation: comparison of alamarBlue assay to 3h-thymidine incorporation assay. J Clin Lab Anal. 1995;9:89–95.PubMedCrossRefGoogle Scholar
  98. 98.
    Stejskal VD, Cederbrant K, Lindvall A, Forsbeck M. MELISA-an in vitro tool for the study of metal allergy. Toxicol In Vitro. 1994;8:991–1000.CrossRefPubMedGoogle Scholar
  99. 99.
    Chen H-C. Boyden chamber assay. Methods Mol Biol. 2005;294:15–22.PubMedGoogle Scholar
  100. 100.
    Keustermans GC, Hoeks SB, Meerding JM, Prakken BJ, de Jager W. Cytokine assays: an assessment of the preparation and treatment of blood and tissue samples. Methods. 2013;61:10–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Pellowe A, Gjerdet N R, Kristofferse E, Vindenes H, Høl P J. Novel titanium antigens cause lymphocyte proliferation and activation of monocyte/macrophage type cytokines. www.ibi-symposium.org/fileadmin/congress/media/ibi/pdf/IBI. 2015 Programm.pdf.
  102. 102.
    Hallab N, Mikecz K, Vermes C, Skipor A, Jacobs J. Differential lymphocyte reactivity to serum-derived metal-protein complexes produced from cobalt-based and titanium-based implant alloy degradation. J Biomed Mater Res. 2001;56:427–36.PubMedCrossRefGoogle Scholar
  103. 103.
    Hallab NJ, Mikecz K, Jacobs JJ. A triple assay technique for the evaluation of metal-induced, delayed-type hypersensitivity responses in patients with or receiving total joint arthroplasty. J Biomed Mater Res. 2000;53:480–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Vermes C, Kuzsner J, Bardos T, Than P. Prospective analysis of human leukocyte functional tests reveals metal sensitivity in patients with hip implant. J Orthop Surg Res. 2013;8:12.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Siddiqi A, Payne A, De Silva R, Duncan W. Titanium allergy: could it affect dental implant integration? Clin Oral Implants Res. 2011;22:673–80.PubMedCrossRefGoogle Scholar
  106. 106.
    Razak A, Ebinesan AD, Charalambous CP. Metal allergy screening prior to joint arthroplasty and its influence on implant choice: a delphi consensus study amongst orthopaedic arthroplasty surgeons. Knee Surg Relat Res. 2013;25:186–93.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Kypta A, Blessberger H, Lichtenauer M, Lambert T, Kammler J, Steinwender C. Gold-coated pacemaker implantation for a patient with type IV allergy to titanium. Indian Pacing Electrophysiol J. 2015;15:291–2.PubMedCrossRefGoogle Scholar
  108. 108.
    OECD. Health at a Glance 2015: OECD indicators. Paris: OECD; 2015.Google Scholar
  109. 109.
    Maradit Kremers H, Larson DR, Crowson CS, Kremers WK, Washington RE, Steiner CA, Jiranek WA, Berry DJ. Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg Am. 2015;97:1386–97.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    DiMatteo A, Latanyshyn K. Guide to implant dentistry - advances in materials and techniques make implants more accessible for general dentists as well as a very desirable option for patients—but are you ready?. Inside Dentistry. 2014:10. http://www.dentalaegis.com/id/2014/04/guide-to-implant-dentistry. Accessed Nov 2016.
  111. 111.
    FDA Adverse Events Database. www.FDAble.com. Accessed Nov 2016.
  112. 112.
    Tamai K, Mitsumori M, Fujishiro S, Kokubo M, Ooya N, Nagata Y, Sasai K, Hiraoka M, Inamoto T. A case of allergic reaction to surgical metal clips inserted for postoperative boost irradiation in a patient undergoing breast-conserving therapy. Breast Cancer. 2001;8:90–2.PubMedCrossRefGoogle Scholar
  113. 113.
    Mylanus EA, Johansson CB, Cremers CW. Craniofacial titanium implants and chronic pain: histologic findings. Otol Neurotol. 2002;23:920–5.PubMedCrossRefGoogle Scholar
  114. 114.
    Thomas P, Bandl WD, Maier S, Summer B, Przybilla B. Hypersensitivity to titanium osteosynthesis with impaired fracture healing, eczema, and T-cell hyperresponsiveness in vitro: case report and review of the literature. Contact Dermatitis. 2006;55:199–202.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    du Preez LA, Butow KW, Swart TJ. Implant failure due to titanium hypersensitivity/allergy?--report of a case. SADJ. 2007;62(22):24–5.Google Scholar
  116. 116.
    Egusa H, Ko N, Shimazu T, Yatani H. Suspected association of an allergic reaction with titanium dental implants: a clinical report. J Prosthet Dent. 2008;100:344–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Goto M, Gotoh M, Mitsui Y, Tanesue R, Okawa T, Higuchi F, Shiba N. Hypersensitivity to suture anchors. Case Rep Orthop. 2013;2013:932167.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Mitchell DL, Synnott SA, VanDercreek JA. Tissue reaction involving an intraoral skin graft and CP titanium abutments: a clinical report. Int J Oral Maxillofac Implants. 1990;5:79–84.PubMedGoogle Scholar
  119. 119.
    Ko N, Mine A, Egusa H, Shimazu T, Ko R, Nakano T, Yatani H. Allergic reaction to titanium-made fixed dental restorations: a clinical report. J Prosthodont. 2014;23:501–3.PubMedCrossRefGoogle Scholar
  120. 120.
    Shittu M, Shah P, Elkhalili W, Suleiman A, Shaaban H, Shah PA, Shamoon F. A rare case of recurrent pacemaker allergic reaction. Heart Views. 2015;16:59–61.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wang LF, Wu J, Zheng C, Li SL, Huang RR, Zhang JK. Long-term fever after hallux valgus surgery secondary to titanium allergy: a case report and review of the literature. J Foot Ankle Surg. 2016;55:1282–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Syburra T, Schurr U, Rahn M, Graves K, Genoni M. Gold-coated pacemaker implantation after allergic reactions to pacemaker compounds. Europace. 2010;12:749–50.PubMedCrossRefGoogle Scholar
  123. 123.
    Hosoki M, Nishigawa K, Miyamoto Y, Ohe G, Matsuka Y. Allergic contact dermatitis caused by titanium screws and dental implants. J Prosthodont Res. 2016;60:213–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Abdallah HI, Balsara RK, O’Riordan AC. Pacemaker contact sensitivity: clinical recognition and management. Ann Thorac Surg. 1994;57:1017–8.PubMedCrossRefGoogle Scholar
  125. 125.
    van Opstal N, Verheyden F. Revision of a tibial baseplate using a customized oxinium component in a case of suspected metal allergy. A case report. Acta Orthop Belg. 2011;77:691–5.PubMedGoogle Scholar
  126. 126.
    Sakamoto K, Ando K, Noma D. Metal allergy to titanium bars after the Nuss procedure for pectus excavatum. Ann Thorac Surg. 2014;98:708–10.PubMedCrossRefGoogle Scholar
  127. 127.
    Verbov JJ. Pacemaker contact sensitivity. Contact Dermatitis. 1985;12:173.PubMedCrossRefGoogle Scholar
  128. 128.
    Buchet S, Blanc D, Humbert P, Girardin P, Vigan M, Anguenot T, Agache P. Pacemaker dermatitis. Contact Dermatitis. 1992;26:46–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Peters MS, Schroeter AL, van Hale HM, Broadbent JC. Pacemaker contact sensitivity. Contact Dermatitis. 1984;11:214–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Belohlavek J, Belohavkova S, Hlubocky J, Mrazek V, Linhart A, Podzimek S. Severe allergic dermatitis after closure of foramen ovale with Amplatzer occluder. Ann Thorac Surg. 2013;96:e57–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Ishii K, Kodani E, Miyamoto S, Otsuka T, Hosone M, Ogata K-I, Sato W, Matsumoto S, Tadera T, Ibuki C, Kusama Y, Atarashi H. Pacemaker contact dermatitis: the effective use of a polytetrafluoroethylene sheet. Pacing Clin Electrophysiol. 2006;29:1299–302.PubMedCrossRefGoogle Scholar
  132. 132.
    Bircher AJ, Stern WB. Allergic contact dermatitis from “titanium” spectacle frames. Contact Dermatitis. 2001;45:244–5.CrossRefPubMedGoogle Scholar
  133. 133.
    Bernard S, Baeck M, Tennstedt D, Haufroid V, Dekeuleneer V. Chromate or titanium allergy-the role of impurities? Contact Dermatitis. 2013;68:181–92.CrossRefGoogle Scholar
  134. 134.
    Teubl BJ, Leitinger G, Schneider M, Lehr CM, Frohlich E, Zimmer A, Roblegg E. The buccal mucosa as a route for TiO2 nanoparticle uptake. Nanotoxicology. 2015;9:253–61.PubMedCrossRefGoogle Scholar
  135. 135.
    Kirmanidou Y, Sidira M, Drosou M-E, Bennani V, Bakopoulou A, Tsouknidas A, Michailidis N, Michalakis K. New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: a review. Biomed Res Int. 2016;2016:2908570.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Osman R, Swain M. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials. 2015;8:932.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Brun R, Hunziker N. Pacemaker dermatitis. Contact Dermatitis. 1980;6:212–3.PubMedCrossRefGoogle Scholar
  138. 138.
    Viraben R, Boulinguez S, Alba C. Granulomatous dermatitis after implantation of a titanium-containing pacemaker. Contact Dermatitis. 1995;33:437.PubMedCrossRefGoogle Scholar
  139. 139.
    Yamauchi R, Morita A, Tsuji T. Pacemaker dermatitis from titanium. Contact Dermatitis. 2000;42:52–3.PubMedGoogle Scholar
  140. 140.
    Muller K, Valentine E. Hypersensitivity to titanium: clinical and laboratory evidence. Neuroendocrinol Lett. 2006;27:31–5.PubMedGoogle Scholar
  141. 141.
    Kikko AR, Rezende A, Golfan C, Nakama C, Cunali H, Soares R. Cutaneous metal reaction from titanium plate: a case report. J Am Acad Dermatol. 2013;68:AB81.Google Scholar
  142. 142.
    Oliva X, Oliva J, Oliva JD. Full-mouth oral rehabilitation in a titanium allergy patient using zirconium oxide dental implants and zirconium oxide restorations. A case report from an ongoing clinical study. Eur J Esthet Dent. 2010;5:190–203.PubMedGoogle Scholar
  143. 143.
    Tiesenga F, Wang J, Crews C. Adverse reactions to titanium surgical staples in a patient after cholecystectomy. CRSLS: MIS Case Rep SLS. 2014:e2014.03056.Google Scholar
  144. 144.
    High W, Ayers R, Adams J, Chang A, Fitzpatrick J. Granulomatous reaction to titanium alloy: an unusual reaction to ear piercing. J Am Acad Dermatol. 2006;55:716–20.PubMedCrossRefGoogle Scholar
  145. 145.
    Olmedo DG, Paparella ML, Brandizzi D, Cabrini RL. Reactive lesions of peri-implant mucosa associated with titanium dental implants: a report of 2 cases. Int J Oral Maxillofac Surg. 2010;39:503–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Langford R, Frame J. Tissue changes adjacent to titanium plates in patients. J Craniomaxillfac Surg. 2002;30:103–7.CrossRefGoogle Scholar
  147. 147.
    Takarada H, Kinebuchi T. Clinical evaluation of hydroxyapatite-coated titanium artificial tooth root. Kokubyo Gakkai Zasshi. 1993;60:532–64.PubMedCrossRefGoogle Scholar
  148. 148.
    Deas DE, Mikotowicz JJ, Mackey SA, Moritz AJ. Implant failure with spontaneous rapid exfoliation: case reports. Implant Dent. 2002;11:235–42.PubMedCrossRefGoogle Scholar
  149. 149.
    Nawaz F, Wall BM. Drug rash with eosinophilia and systemic symptoms (DRESS) syndrome: suspected association with titanium bioprosthesis. Am J Med Sci. 2007;334:215–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Dörner T, Haas J, Loddenkemper C, von Baehr V, Salama A. Implant-related inflammatory arthritis. Nat Clin Pract Rheumatol. 2006;2:53–6.PubMedCrossRefGoogle Scholar
  151. 151.
    Hettige S, Norris JS. Mortality after local allergic response to titanium cranioplasty. Acta Neurochir. 2012;154:1725–6.PubMedCrossRefGoogle Scholar
  152. 152.
    Brahimaj B, Lamba M, Breneman JC, Warnick RE. Iodine-125 seed migration within brain parenchyma after brachytherapy for brain metastasis: case report. J Neurosurg. 2016;125:1167–70.PubMedCrossRefGoogle Scholar
  153. 153.
    Redline S, Barna BP, Tomashefski JF Jr, Abraham JL. Granulomatous disease associated with pulmonary deposition of titanium. Br J Ind Med. 1986;43:652–6.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Berglund F, Carlmark B. Titanium, sinusitis, and the yellow nail syndrome. Biol Trace Elem Res. 2011;143:1–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Freeman S. Allergic contact dermatitis to titanium in a pacemaker. Contact Dermatitis. 2006;55(Suppl 1):41.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Contact Dermatitis InstitutePhoenixUSA

Personalised recommendations