Metal Allergy pp 227-246 | Cite as

Prevention of Metal Exposure: Chelating Agents and Barrier Creams

  • Manohar Mahato
  • Nicholas E. Sherman
  • N. Kiran Kumar Mudnakudu
  • Nitin Joshi
  • Elisabeth Briand
  • Jeffrey M. KarpEmail author
  • Praveen Kumar VemulaEmail author


Metals are a group of elements which are ubiquitous in modern life. They are used in the fields of cosmetics, water purification, medicine, paint, food products, pesticides, and almost innumerable others. As the use of metals has increased in recent decades, so has human exposure to these elements. Metals such as mercury, lead, arsenic, nickel, and others have been implicated in negatively affecting human homeostasis by causing chronic inflammatory diseases, among other serious conditions. Both acute and chronic metal toxicity in vital organs could arise from local or systemic exposure to numerous metals. Although some metals have health benefits, overaccumulation of metals in body tissues can result in deleterious, toxic effects. Most exposure to metals occurs via cutaneous, inhalation, or oral routes. At the highest risk of negative effects of exposure are pregnant women and children. To ameliorate or prevent the toxic effects of metals, chelating agents and barrier creams are used widely in medical practice today. In this chapter, we will discuss preventing metal toxicity from overexposure via chelation therapy and skin barrier creams.



J.M.K., P.K.V, and E.B. hold equity in Skintifique, a company that has developed a proprietary nickel chelation technology and is commercializing products derived from this technology. E.B. is also an employee of Skintifique. J.M.K. and P.K.V. may benefit financially from Skintifique commercial sales of these products if the corresponding IP is licensed or optioned. The interests of J.M.K. and P.K.V. were reviewed and are subjected to a management plan overseen by their institutions in accordance with their conflict of interest policies.


  1. 1.
    Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metals toxicity and the environment. EXS. 2012;101:133–64.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Jarup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68:167–82.PubMedGoogle Scholar
  3. 3.
    Vahter M, Berglund M, As kesson A, LideHn C. Metals and Women’s health. Environ Res Sect A. 2002;88:145–55.Google Scholar
  4. 4.
    Gardner RM, Kippler M, Tofail F, Bottai M, Hamadani J, Grander M, Nermell B, Palm B, Rasmussen KM, Vahter M. Environmental exposure to metals and children’s growth to age 5 years: a prospective cohort study. Am J Epidemiol. 2013;177:1356–67.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bazzicalupi C, Bianchi A, Giorgi C, Clares MP, García-Espana E. Addressing selectivity criteria in binding equilibria. Coord Chem Rev. 2012;256:13–27.Google Scholar
  6. 6.
    Pearson RG. Chemical hardness and density functional theory. J Chem Sci. 2005;117:369–77.Google Scholar
  7. 7.
    Hancock RD, Martell AE. Ligand design for the selective complexation of metal ions in aqueous solution. Chem Rev. 1989;89:1875–914.Google Scholar
  8. 8.
    Crisponi G, Nurchi VM, Crespo-Alonso M, Toso L. Chelating agents for metal intoxication. Curr Med Chem. 2012;19:2794–815.PubMedGoogle Scholar
  9. 9.
    Grady RW, Berdoukas VA, Rachmilewitz EA, Galanello R, Borgna-Pignatti C, Giardina PJ. Optimizing chelation therapy: combining deferiprone and desferrioxamine. Blood. 1999;96(Suppl 1):604a.Google Scholar
  10. 10.
    Klaassen CD. Heavy metals and heavy metal antagonists. In: Goodman L, Gilman A, editors. The pharmacological basis of therapeutics. New York, NY: McGraw Hill, Medical Publishing Division; 2006. p. 1825–72.Google Scholar
  11. 11.
    Andersen O. Principles and recent developments in chelation treatment of metal intoxication. Chem Rev. 1999;99:2683–710.PubMedGoogle Scholar
  12. 12.
    DRUGDEX. Drug evaluation. In: Thomson MICROMEDEX Healthcare Series (Monograph on CD-ROM); 2004. p. 122.Google Scholar
  13. 13.
    Llobet JM, Domingo JL, Corbella J. Comparison of the effectiveness of several chelators after single administration on the toxicity, excretion and distribution of cobalt. Arch Toxicol. 1986;58:278–81.PubMedGoogle Scholar
  14. 14.
    Llobet JM, Domingo JL, Corbella J. Antidotes for zinc intoxication in mice. Arch Toxicol. 1988;61:321–3.PubMedGoogle Scholar
  15. 15.
    Radiation Emergency Assistance Center, Training Site (REAC/TS). Ca-DTPA (Trisodium calcium diethylenetriaminepentaacetate). Oak Ridge, TN: Oak Ridge Institute for Science and Education; 2002.Google Scholar
  16. 16.
    Spoor NL. The use of EDTA and DTPA for accelerating the removal of deposited transuranic elements from human. Didcot: Harwell; 1977.Google Scholar
  17. 17.
    Jech JJ, Andersen BV, Heid KR. Interpretation of human urinary excretion of plutonium for cases treated with DTPA. Health Phys. 1972;22:787–92.PubMedGoogle Scholar
  18. 18.
    Bulman RA, Griffin RJ, Russell AT. An examination of some complexing agents for ability to remove intracellularly deposited plutonium. Health Phys. 1979;37:729–34.PubMedGoogle Scholar
  19. 19.
    Stradling GN, Stather JW, Sumner SA, Moody JC, Strong JC. Decorporation of inhaled americium-241 dioxide and nitrate from hamsters using ZnDTPA and Puchel. Health Phys. 1984;46:1296–300.PubMedGoogle Scholar
  20. 20.
    Volf V, Peter E. DTPA is superior to its lipophilic derivative Puchel in removing 234Th, 238,239Pu and 241Am from Chinese hamsters and rats. Health Phys. 1984;46:422–6.PubMedGoogle Scholar
  21. 21.
    Stather JW, Stradling GN, Smith H, Payne S, James AC, Strong JC, Ham S, Sumner S, Bulman RA, Hodgson A, Towndrow C, Ellender M. Decorporation of 238PuO2 from the hamster by inhalation of chelating agents. Health Phys. 1982;42:520–5.PubMedGoogle Scholar
  22. 22.
    Miller SC, Bruenger FW, Kuswik-Rabiega G, Lloyd RD. Decorporation of plutonium by oral administration of a partially lipophilic polyaminocarboxylic acid. Health Phys. 1992;63:195–7.PubMedGoogle Scholar
  23. 23.
    Miller SC, Bruenger FW, Kuswik-Rabiega G, Lloyd RD. Duration and Dose-related effects of an orally administered, partially lipophilic polyaminocarboxylic acid on the decorporation of plutonium and americium. J Pharmacol Exp Ther. 1993;267:548–54.PubMedGoogle Scholar
  24. 24.
    Bruenger FW, Kuswik-Rabiega G, Miller SC. Decorporation of aged americium deposits by oral administration of lipophilic polyamino carboxylic acids. J Med Chem. 1992;35:112–8.PubMedGoogle Scholar
  25. 25.
    Miller SC, Wang X, Bowman BM. Pharmacological properties of orally available, amphipathic polyaminocarboxylic acid chelators for actinide decorporation. Health Phys. 2010;99:408–12.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Sueda K, Sadgrove MP, Huckle JE, Leed MG, Weber WM, Doyle-Eisele M, Guilmette RA, Jay M. Orally administered DTPA penta-ethyl ester for the decorporation of inhaled (241). Am J Pharm Sci. 2014;103:1563–71.PubMedGoogle Scholar
  27. 27.
    Kirk JF, Abernethy JA, Tomisaka DM, Talton JD. Preclinical toxicology, pharmacology, and efficacy of a novel orally administered diethylenetriaminepentaacetic acid (DTPA) formulation. Drug Dev Res. 2012;73:232–42.Google Scholar
  28. 28.
    Wilson JP, Cobb RR, Dungan NW, Matthews LL, Eppler B, Aiello KV, Curtis S, Boger T, Guilmette RA, Weber W, Doyle-Eisele M, Talton JD. Decorporation of systemically distributed americium by a novel orally administered diethylenetriaminepentaacetic acid (DTPA) formulation in beagle dogs. Health Phys. 2015;108:308–18.PubMedGoogle Scholar
  29. 29.
    Peters R, Stocken L, Thompson R. British anti-lewisite (BAL). Nature. 1945;156:616–9.PubMedGoogle Scholar
  30. 30.
    Hoover TD, Aposhian HV. BAL increases the arsenic-74 content of rabbit brain. Toxicol Appl Pharmacol. 1983;70:160–2.PubMedGoogle Scholar
  31. 31.
    Berlin M, Ullberg S. Increasing uptake of mercury in mouse brain caused by 2,3-dimercaptopropanol (BAL). Nature. 1963;197:84–5.PubMedGoogle Scholar
  32. 32.
    Andersen O. Chemical and biological considerations in the treatment of metal intoxications by chelating agents. Mini Rev Med Chem. 2004;4:11–21.PubMedGoogle Scholar
  33. 33.
    Englund GS, Dahlqvistt R, Lindelof B, Soderman E, Jonzon B, Vesterberg O, Larsson KS. DMSA administration to patients with alleged mercury poisoning from dental amalgams: a placebo-controlled study. J Dent Res. 1994;73:620–8.Google Scholar
  34. 34.
    Alan L, Miller ND. Dimercaptosuccinic acid (DMSA), a non-toxic, water-soluble treatment for heavy metal toxicity. Altern Med Rev. 1998;3:199–207.Google Scholar
  35. 35.
    Graziano JH. Role of 2,3-dimercaptosuccinic acid in the treatment of heavy metal poisoning. Med Tox. 1986;1:155–62.Google Scholar
  36. 36.
    Flora SJS, Dubey R, Kannan GM, Chauhan RS, Pant BP, Jaiswal DK. Meso-2,3-dimercaptosuccinic acid (DMSA) and monoisoamyl DMSA effect on gallium arsenide induced pathological liver injury in rats. Toxicol Lett. 2002;132:9–17.PubMedGoogle Scholar
  37. 37.
    Flora SJS, Pande M, Kannan GM, Mehta A. Lead induced oxidative stress and its recovery following co-administration of melatonin or n-acetylcysteine during chelation with succimer in male rats. Cell Mol Biol. 2004;50:543–51.Google Scholar
  38. 38.
    Jones MM, Singh PK, Gale GR, Smith AB, Atkins LM. Cadmium mobilization in vivo by intraperitoneal or oral administration of mono alkyl esters of meso-2,3-dimercaptosuccinic acid. Pharmacol Toxicol. 1992;70:336–43.PubMedGoogle Scholar
  39. 39.
    Kreppel H, Reichl F-X, Szinicz L, Fichtl B, Forth W. Efficacy of various dithiol compounds in acute As2O3 poisoning in mice. Arch Toxicol. 1990;64:387–92.PubMedGoogle Scholar
  40. 40.
    Aposhian HV, Maiorino RM, Dart RC, Perry DF. Urinary excretion of meso-2,3-dimercaptosuccinic acid in human subjects. Clin Pharmacol Ther. 1989;45:520–6.PubMedGoogle Scholar
  41. 41.
    Gersl V, Hrdina R, Vavrova J, Holeckova M, Palicka V, Vogkova J, Mazurova Y, Bajgar J. Effects of repeated administration of dithiol chelating agent- sodium 2,3-dimercapto 1-propanesulphonate (DMPS)- on biochemical and hematological parameters in rabbits. Acta Med Austriaca. 1997;40:3–8.Google Scholar
  42. 42.
    Flora SJS, Bhattacharya R, Vijayaraghavan R. Combined therapeutic potential of meso 2,3-dimercaptosuccinic acid and calcium disodium edetate in the mobilization and distribution of lead in experimental lead intoxication in rats. Fund Appl Toxicol. 1995;25:233–40.Google Scholar
  43. 43.
    Kalia K, Flora SJS. Strategies for safe and effective treatment for chronic arsenic and lead poisoning. J Occup Hlth. 2005;47:1–21.Google Scholar
  44. 44.
    Aposhian MM, Maiorino RM, Xu Z. Sodium 2,3-dimercapto-1-propanesulfonate (DMPS) treatment does not redistribute lead or mercury to the brain of rats. Toxicology. 1996;109:49–55.PubMedGoogle Scholar
  45. 45.
    Yamada R. Antivitamin B6 activity of L-penicillamine in Escherichia coli. Acta Vitaminol Enzymol. 1983;5:73–81.PubMedGoogle Scholar
  46. 46.
    Roussaeux CG, MacNabb LG. Oral administration of D-penicillamine causes neonatal mortality without morphological defects in CD-1 mice. J Appl Toxicol. 1992;12:35–8.Google Scholar
  47. 47.
    Peisach J, Blumberg WE. A mechanism for the action of penicillamine in the treatment of Wilson's disease. Mol Pharmacol. 1969;5:200–9.PubMedGoogle Scholar
  48. 48.
    Crisponi G, Nurchi VM, Fanni D, Gerosa C, Nemolato S, Faa G. Copper- related diseases: from chemistry to molecular pathology. Coord Chem Rev. 2010;254:876–89.Google Scholar
  49. 49.
    Gupta B, Srivastava RK, Saxena KK, Prasad DN. A study on the penicillamine induced gastric ulceration in the rat. Ind J Pharmacol. 1980;12:247–52.Google Scholar
  50. 50.
    Grasedyck K. D-penicillamine—side effects, pathogenesis and decreasing the risks. Z Rheumatol. 1988;47:17–9.PubMedGoogle Scholar
  51. 51.
    Kodama H, Meguro Y, Tsunakawa A, Nakazato Y, Abe T, Murakita H. Fate of orally administered triethylenetetramine dihydrochloride: a therapeutic drug for Wilson’s disease. Tohoku J Exp Med. 1993;169:59–66.PubMedGoogle Scholar
  52. 52.
    Kodama H, Murata Y, Iitsuka T, Abe T. Metabolism of administered triethylene tetramine dihydrochloride in humans. Life Sci. 1997;61:899–907.PubMedGoogle Scholar
  53. 53.
    Suzuki KT, Ogra Y. Formation of copper-metallothionein/tetrathiomolybdate complex is the first step in removal of cu from LEC rats. Res Commun Mol Pathol Pharmacol. 1995;88:187–95.PubMedGoogle Scholar
  54. 54.
    Ogra Y, Chikusa H, Suzuki KT. Metabolic fate of the insoluble copper/tetrathiomolybdate complex formed in the liver of LEC rats with excess tetrathiomolybdate. J Inorg Biochem. 2000;78:123–8.PubMedGoogle Scholar
  55. 55.
    Harper PL, Walshe JM. Reversible pancytopenia secondary to treatment with Tetrathiomolybdate. Br J Haematol. 1986;64:851–3.PubMedGoogle Scholar
  56. 56.
    Brewer GJ, Askari F, Lorincz MT, Carlson M, Schilsky M, Kluin KJ, Hedera P, Moretti P, Fink JK, Tankanow R, Dick RB, Sitterly J. Treatment of Wilson disease with ammonium tetrathiomolybdate. IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol. 2006;63:521–7.PubMedGoogle Scholar
  57. 57.
    Brewer GJ. The modern treatment of Wilson’s disease. J Gastrointest Dig Syst. 2015;5:1–9.Google Scholar
  58. 58.
    Bahnemann R, Leibold E, Kittel B, Mellert W, Jackh R. Different patterns of kidney toxicity after sub-acute administration of Na-nitrilotriacetic acid and Fe-nitrilotriacetic acid to Wistar rats. Toxicol Sci. 1998;46:166–75.PubMedGoogle Scholar
  59. 59.
    Tandon SK, Mathur AK. Chelation in metal intoxication. III. Lowering of nickel content in poisoned rat organs. Acta Pharmacol Toxicol. 1976;38:401–8.Google Scholar
  60. 60.
    Dietrich DR, Swenberg JA. Preneoplastic lesions in rodent kidney induced spontaneously or by non-genotoxic agents: predictive nature and comparison to lesion induced by genotoxic carcinogens. Mutat Res. 1991;248:239–60.PubMedGoogle Scholar
  61. 61.
    Anderson RL. The role of zinc in nitrilotriacetate (NTA)-associated renal tubular cell toxicity. Fd Cosmet Toxicol. 1981;19:639–50.Google Scholar
  62. 62.
    Hartwig A, Klyszcz-Nasko H, Schlepegrell R, Beyersmann D. Cellular damage by ferric nitrilotriacetate and ferric citrate in V79 cells: interrelationship between lipid peroxidation, DNA strand breaks and sister chromatid exchange. Carcinogenesis. 1993;14:107–12.PubMedGoogle Scholar
  63. 63.
    Umemura T, Hasegawa R, Sai-Kato K, Nishikawa A, Furukawa F, Toyokum S, Uchida K, Inouc T, Kurokawa Y. Prevention by 2-mercaptoethane sulfonate and N-acetylcysteine of renal oxidative damage in rats treated with ferric nitrilotriacetate. Jpn J Cancer Res. 1996;87:882–6.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Hershko C, Link G, Tzahor M, Pinson A. In: Bergeron RJ, Brittenham GM, editors. The development of iron Chelators for clinical use. Boca Raton, FL: CRC Press; 1994. p. 75–96.Google Scholar
  65. 65.
    Moeschlin S, Schnider U. Treatment of primary and secondary hemochromatosis and acute iron poisoning with a new, potent iron-eliminating agent, desferrioxamine B. New Engl J Med. 1963;269:57–66.Google Scholar
  66. 66.
    Lee P, Mohammed N, Marshall L, Abeysinghe RD, Hider RC, Porter JB, Singh S. Intravenous infusion pharmacokinetics of desferrioxamine in thalassaemic patients. Drug Metab Dispos. 1993;21:640–4.PubMedGoogle Scholar
  67. 67.
    Pippard MJ. In: Bergeron RJ, Brittenham GM, editors. The development of iron Chelators for clinical use. Boca Raton, FL: CRC Press; 1994. p. 57–74.Google Scholar
  68. 68.
    Faa G, Crisponi G. Iron chelating agents in clinical practice. Coord Chem Rev. 1999;184:291–310.Google Scholar
  69. 69.
    Hider RC, Kontoghiorghes GJ, Silver J. UK Patent GB-2118176, 1982.Google Scholar
  70. 70.
    Olivieri NF, Koren G, Matsui D, Liu PP, Blendis L, Cameron R, McClelland RA, Templeton DM. Reduction of tissue iron stores and normalization of serum ferritin during treatment with the oral iron chelator L1 in thalassemia intermedia. Blood. 1992;79:2741–8.PubMedGoogle Scholar
  71. 71.
    Kontoghiorghes GJ. Iron mobilization from ferritin using α-oxohydroxy heteroaromatic chelators. Biochem J. 1986;233:299–302.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Kontoghiorghes GJ. The study of iron mobilisation from transferrin using α- ketohydroxy heteroaromatic chelators. Biochim Biophys Acta. 1986;869:141–6.PubMedGoogle Scholar
  73. 73.
    Hider RC, Porter JB, Singh S. In: Bergeron RJ, Brittenham GM, editors. The development of iron Chelators for clinical use. Boca Raton, FL: CRC Press; 1994. p. 354–71.Google Scholar
  74. 74.
    Olivieri NF, Koren G, Hermann C, Bentur Y, Chung D, Klein J, Louis PS, Freedman MH, McClelland RA, Templeton DM. Comparison of oral iron chelator L1 and desferrioxamine in iron-loaded patients. Lancet. 1990;336:1275–9.PubMedGoogle Scholar
  75. 75.
    Capellini MD. Iron-chelating therapy with the new oral agent ICL670 (Exjade®). Best Prac & Res Clin Haemat. 2005;18:289–98.Google Scholar
  76. 76.
    Department of Health and Human Services, Food and Drug Administration, Guidance for industry on Prussian Blue for treatment of internal contamination with Thallium or radioactive Cesium; Availability. Docket No. 03D-0023, 2003.Google Scholar
  77. 77.
    Pearce J. Studies of any toxicological effects of Prussian blue compounds in mammals—a review. Food Chem Toxicol. 1994;32:577–82.PubMedGoogle Scholar
  78. 78.
    Bergeron RJ, Wiegand J, Singh S. Desferrithiocin analogue uranium decorporation agents. Int J Radiat Biol. 2009;85:348–61.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Metivier H, Masse R, Durbin PW, Raymond KN. Promotion by tetrameric catechoylamide ligands and CaNa3-DTPA of the dissociation in vitro of the Putransferrin complex formed after intravenous injection of Pu-tri-N-butylphosphate. Health Phys. 1985;49:1302–5.PubMedGoogle Scholar
  80. 80.
    Lloyd RD, Bruenger FW, Mays CW, Atherton DR, Jones CW, Taylor GN, Stevens W, Durbin PW, Jeung N, Jones ES, et al. Removal of Pu and am from beagles and mice by 3,4,3-LICAM(C) or 3,4,3-LICAM(S). Radiat Res. 1984;99:106–28.PubMedGoogle Scholar
  81. 81.
    Duffield JR, Taylor DM, Proctor SA. The binding of plutonium to transferrin in the presence of tri-n-butyl phosphate or nitrate and its release by diethylenetriaminepenta-acetate and the tetrameric catechoylamide ligand LICAMC(C). Int J Nucl Med Biol. 1986;12:483–7.PubMedGoogle Scholar
  82. 82.
    Volf V, Wirth R. Effective chelation therapy after incorporation of neptunium-239 in rats. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;50:955–9.PubMedGoogle Scholar
  83. 83.
    Durbin PW, Jeung N, Jones ES, Weitl FL, Raymond KN. Specific sequestering agents for the actinides: 10. Enhancement of 238Pu elimination from mice by poly(catechoylamide) ligands. Radiat Res. 1984;99:85–105.PubMedGoogle Scholar
  84. 84.
    Volf V. Chelation therapy of incorporated plutonium-238 and americium-241: comparison of LICAM(C), DTPA and DFOA in rats, hamsters and mice. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;49:449–62.PubMedGoogle Scholar
  85. 85.
    Guseva Canu I, Jacob S, Cardis E, Wild P, Caer S, Auriol B, Garsi JP, Tirmarche M, Laurier D. Uranium carcinogenicity in humans might depend on the physical and chemical nature of uranium and its isotopic composition: results from pilot epidemiological study of French nuclear workers. Cancer Causes Control. 2011;22:1563–73.PubMedGoogle Scholar
  86. 86.
    Durbin PW, Lauriston S. Taylor lecture: the quest for therapeutic actinide chelators. Health Phys. 2008;95:465–92.PubMedGoogle Scholar
  87. 87.
    Ramounet-Le Gall B, Grillon G, Rateau G, Burgada R, Bailly T, Fritsch P. Comparative decorporation efficacy of 3,4,3-LIHOPO, 4,4,4-LIHOPO and DTPA after contamination of rats with soluble forms of 238Pu and 233U. Radiat Prot Dosim. 2003;105:535–8.Google Scholar
  88. 88.
    Abergel RJ, Durbin PW, Kullgren B, Ebbe SN, Xu J, Chang PY, Bunin DI, Blakely EA, Bjornstad KA, Rosen CJ, Shuh DK, Raymond KN. Biomimetic actinide chelators: an update on the preclinical development of the orally active hydroxypyridonate decorporation agents 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). Health Phys. 2010;99:401–7.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Guilmette RA, Hakimi R, Durbin PW, Xu J, Raymond KN. Competitive binding of Pu and Am with bone mineral and novel chelating agents. Radiat Prot Dosim. 2003;105:527–34.Google Scholar
  90. 90.
    Henge-Napoli MH, Archimbaud M, Ansoborlo E, Metivier H, Gourmelon P. Efficacy of 3,4,3-LIHOPO for reducing the retention of uranium in rat after acute administration. Int J Radiat Biol. 1995;68:389–93.PubMedGoogle Scholar
  91. 91.
    An DD, Villalobos JA, Morales-Rivera JA, Rosen CJ, Bjornstad KA, Gauny SS, Choi TA, Sturzbecher-Hoehne M, Abergel RJ. (238)Pu elimination profiles after delayed treatment with 3,4,3LI(1,2HOPO) in female and male Swiss-Webster mice. Int J Radiat Biol. 2014;90:1055–61.PubMedGoogle Scholar
  92. 92.
    Durbin PW, Kullgren B, Xu J, Raymond KN, Henge-Napoli MH, Bailly T, Burgada R. Octadentate hydroxypyridinonate (HOPO) ligands for plutonium (i.v.): pharmacokinetics and oral efficacy. Radiat Prot Dosim. 2003;105:503–8.Google Scholar
  93. 93.
    Bunin DI, Chang PY, Doppalapudi RS, Riccio ES, An D, Jarvis EE, Kullgren B, Abergel RJ. Dose-dependent efficacy and safety toxicology of hydroxypyridinonate actinide decorporation agents in rodents: towards a safe and effective human dosing regimen. Radiat Res. 2013;179:171–82.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Choi TA, Furimsky AM, Swezey R, Bunin DI, Byrge P, Iyer LV, Chang PY, Abergel RJ. In vitro metabolism and stability of the actinide chelating agent 3,4,3-LI(1,2-HOPO). J Pharm Sci. 2015;104:1832–8.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Fattal E, Tsapis N, Phan Elias G. Novel drug delivery systems for actinides (uranium and plutonium) decontamination agents. Adv Drug Deliv Rev. 2015;90:40–54.PubMedGoogle Scholar
  96. 96.
    Henge-Napoli MH, Ansoborlo E, Chazel V, Houpert P, Paquet F, Gourmelon P. Efficacy of ethane-1-hydroxy-1,1-bisphosphonate (EHBP) for the decorporation of uranium after intramuscular contamination in rats. Int J Radiat Biol. 1999;75:1473–7.PubMedGoogle Scholar
  97. 97.
    Ubios AM, Braun EM, Cabrini RL. Lethality due to uranium poisoning is prevented by ethane-1-hydroxy-1,1-biphosphonate (EHBP). Health Phys. 1994;66:540–4.PubMedGoogle Scholar
  98. 98.
    Martinez AB, Cabrini RL, Ubios AM. Orally administered ethane-1-hydroxy-1,1- biphosphonate reduces the lethal effect of oral uranium poisoning. Health Phys. 2000;78:668–71.PubMedGoogle Scholar
  99. 99.
    Martinez AB, Mandalunis PM, Bozal CB, Cabrini RL, Ubios AM. Renal function in mice poisoned with oral uranium and treated with ethane-1-hydroxy-1,1- bisphosphonate (EHBP). Health Phys. 2003;85:343–7.PubMedGoogle Scholar
  100. 100.
    Fukuda S, Iida H, Ikeda M, Yan X, Xie Y. Toxicity of uranium and the removal effects of CBMIDA and EHBP in simulated wounds of rats. Health Phys. 2005;89:81–8.PubMedGoogle Scholar
  101. 101.
    Bozal CB, Martinez AB, Cabrini RL, Ubios AM. Effect of ethane-1-hydroxy-1,1-bisphosphonate (EHBP) on endochondral ossification lesions induced by a lethal oral dose of uranyl nitrate. Arch Toxicol. 2005;79:475–81.PubMedGoogle Scholar
  102. 102.
    Tymen H, Gerasimo P, Hoffschir D. Contamination and decontamination of rat and human skin with plutonium and uranium, studied with a Franz's chamber. Int J Radiat Biol. 2000;76:1417–24.PubMedGoogle Scholar
  103. 103.
    Giglio MJ, Frid A, Bozzini CE. Influence of bisphosphonate on the negative Erythropoietic effects of uranyl nitrate. Int J Clin Lab Res. 1997;27:199–201.PubMedGoogle Scholar
  104. 104.
    Houpert P, Chazel V, Paquet F, Bailly T, Burgada R, Henge-Napoli MH. Reduction of uranium transfer by local chelation in simulated wounds in rats. Hum Exp Toxicol. 2001;20:237–41.PubMedGoogle Scholar
  105. 105.
    Houpert P, Chazel V, Paquet F. A local approach to reduce industrial uranium wound contamination in rats. Can J Physiol Pharmacol. 2004;82:73–8.PubMedGoogle Scholar
  106. 106.
    Sawicki M, Lecerclé D, Grillon G, Le Gall B, Sérandour A-L, Poncy J-L, Bailly T, Burgada R, Lecouvey M, Challeix V, Leydier A, Pellet-Rostaing S, Ansoborlo E, Taran F. Bisphosphonate sequestering agents. Synthesis and preliminary evaluation for in vitro and in vivo uranium(VI) chelation. Eur J Med Chem. 2008;43:2768–77.PubMedGoogle Scholar
  107. 107.
    Bouvier-Capely C, Manoury A, Legrand A, Bonthonneau JP, Cuenot F, Rebière F. The use of calix[6]arene molecules for actinides analysis in urine and drinking water: an alternative to current procedures. J Radioanal Nucl Chem. 2009;282:611–5.Google Scholar
  108. 108.
    Dinse C, Baglan N, Cossonnet C, Bouvier C. New purification protocol for actinide measurement in excreta based on calixarene chemistry. Appl Radiat Isot. 2000;53:381–6.PubMedGoogle Scholar
  109. 109.
    Petrella AJ, Raston CL. Calixarenes as platforms for the construction of multimetallic complexes. J Organomet Chem. 2004;689:4125–36.Google Scholar
  110. 110.
    Araki K, Hashimoto N, Otsuka H, Nagasaki T, Shinkai S. Molecular design of a calix[6] arene-based super-uranophile with C3 symmetry. High UO2 2+ selectivity in solvent extraction. Chem Lett. 1993;22:829–32.Google Scholar
  111. 111.
    Rodik RV, Boyko VI, Kalchenko VI. Calixarenes in bio-medical researches. Curr Med Chem. 2009;16:1630–55.PubMedGoogle Scholar
  112. 112.
    Da Silva E, Shahgaldian P, Coleman AW. Haemolytic properties of some water soluble para-sulphonato-calix-[n]-arenes. Int J Pharm. 2004;273:57–62.PubMedGoogle Scholar
  113. 113.
    Yantasee W, Rutledge RD, Chouyyok W, Sukwarotwat V, Orr G, Warner CL, Warner MG, Fryxell GE, Wiacek RJ, Timchalk C, Addleman RS. Functionalized Nanoporous silica for the removal of heavy metals from biological systems: adsorption and application. ACS Appl Mater Interfaces. 2010;2:2749–58.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Sangvanich T, Morry J, Fox C, Ngamcherdtrakul W, Goodyear S, Castro D, Fryxell GE, Addleman RS, Summers AO, Yantasee W. Novel oral detoxification of mercury, cadmium, and lead with thiol-modified nanoporous silica. ACS Appl Mater Interfaces. 2014;6:5483–93.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Sangvanich T, Ngamcherdtrakul W, Lee R, Morry J, Castro D, Fryxell GE, Yantasee W. Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal. J Nanomed Nanotechnol. 2014;5:4.Google Scholar
  116. 116.
    Prystowsky SD, Allen AM, Smith RW, Nonomura JH, Odom RB, Akers WA. Allergic contact hypersensitivity to nickel neomycin ethylenediamine and benzocaine. Arch Dermatoll. 1979;115:959–62.Google Scholar
  117. 117.
    Fischer T. In: Maibach HI, Menne T, editors. Nickel and the skin; immunology and toxicology. Boca Raton, FL: CRC Press; 1989. p. 117–32.Google Scholar
  118. 118.
    Orchard S. Barrier creams. Dermatol C/in. 1984;2:619–29.Google Scholar
  119. 119.
    Hepburn I. Personal communication. UK: Royal Mint; 1993.Google Scholar
  120. 120.
    Memon AA, Molokhia MM, Friedmann PS. The inhibitory effects of topical chelating agents and antioxidants on nickel-induced hypersensitivity reactions. J Am Acad Dermatol. 1994;30:560–5.PubMedGoogle Scholar
  121. 121.
    Allenby CF, Goodwin BFJ. Influence of detergent washing powders on minimal eliciting patch test concentrations of nickel and chromium. Contact Dermatitis. 1983;9:491–9.PubMedGoogle Scholar
  122. 122.
    Resl V, Sykora J. In vitro testing of ointments designed to protect the skin from damage by chromium and nickel. Dermatol Wochenschr. 1965;151:1327–40.Google Scholar
  123. 123.
    Kurtin A, Orentreich N. Chelation deactivation of nickel ion in allergic eczematous sensitivity. J Invest Dermatol. 1954;22:441–5.PubMedGoogle Scholar
  124. 124.
    Gawkrodger DJ, Healy J, Howe AM. The prevention of nickel contact dermatitis- a review of the use of binding agents and barrier creams. Contact Dermatitis. 1995;32:257–65.Google Scholar
  125. 125.
    Whorl S, Kriechbaumer N, Hemmer W, Focke M, Brannath W, Gotz M, Jarisch R. A cream containing the chelator DTPA (diethylenetriaminepenta-acetic acid) can prevent contact allergic reactions to metals. Contact Dermatitis. 2001;44:224–8.Google Scholar
  126. 126.
    Berndt U, Wigger-Alberti W, Gabard B, Elsner P. Efficacy of a barrier cream and its vehicle as protective measures against occupational irritant contact dermatitis. Contact Dermatitis. 2000;42:77–80.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Jarisch R, Ballczo H, Richter W. Nickel allergy—elimination of the harmful agent with cation exchangers (I). Z Hautkr. 1975;50:33–9.PubMedGoogle Scholar
  128. 128.
    Jarisch R, Ballczo H, Richter W. Nickel allergy—elimination of the harmful agent with cation exchangers (II). Z Hautkr. 1975;50:53–7.PubMedGoogle Scholar
  129. 129.
    Vemula PK, Rox Anderson R, Karp JM. Nanoparticles reduce nickel allergy by capturing metal ions. Nat Nanotech. 2011;6:291–5.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manohar Mahato
    • 1
  • Nicholas E. Sherman
    • 2
  • N. Kiran Kumar Mudnakudu
    • 1
  • Nitin Joshi
    • 2
  • Elisabeth Briand
    • 3
  • Jeffrey M. Karp
    • 3
    • 4
    Email author
  • Praveen Kumar Vemula
    • 1
    • 5
    Email author
  1. 1.Institute for Stem Cell Biology and Regenerative Medicine (inStem)BangaloreIndia
  2. 2.Department of Medicine, Division of Engineering in MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Skintifique R&DParisFrance
  4. 4.Harvard-MIT Division of Health Science and TechnologyCambridgeUSA
  5. 5.Ramalingaswami Re-Entry Fellow, Department of BiotechnologyGovernment of IndiaNew DelhiIndia

Personalised recommendations