Advertisement

Nanomaterial Toxicity in Microbes, Plants and Animals

  • Babita Kaundal
  • Swayamprava Dalai
  • Subhasree Roy Choudhury
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 26)

Abstract

Nanotechnology has gained public interest due to its extensive use in commercial products including industry, electronic components, agriculture, sports, sunscreens, medicine and biomedical field. As a consequence there is an unprecedented growth of research in medicine for nanotoxicity following inhalation, ingestion and skin contact. This review presents the toxicity, fate, behavior and mechanism of action of nanomaterials. It includes the effect of nanomaterials on microbes, plant, animal and human. Factors controlling toxicity are nanoparticle size, shape, surface charge, composition, ionic concentration and other physicochemical properties. We also list the market-available nanoproducts having toxic effects. We describe the tests for detection of cytotoxity and genotoxicity. Risk management, rules and regulations for marketed nanomaterials are also highlighted.

Keywords

Nanoparticles Nanotoxicology Cytotoxicity Genotoxicity Oxidative stress 

Notes

Acknowledgement

We kindly acknowledge SERB DST Funding (YSS/2015/001706) to Dr. Subhasree Roy Choudhury.

References

  1. Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19):3527–3532CrossRefPubMedGoogle Scholar
  2. Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA (2010) Genotoxic potential of copper oxide Nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396:578e583. doi: 10.1016/j.bbrc.2010.04.156 CrossRefGoogle Scholar
  3. Ahamed M, Akhtar MJ, Raja M et al (2011a) ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine 7:904e913. doi: 10.1016/j.nano.2011.04.011 Google Scholar
  4. Ahamed M, Siddiqui MA, Ahmad J, Musarrat J, AlKhedhairy AA, AlSalhi MS, Alrokayan SA (2011b) Oxidative stress mediated apoptosis induced by nickel ferrite Nanoparticles in cultured A549 cells. Toxicology 283:101e108. doi: 10.1016/j.tox.2011.02.010 CrossRefGoogle Scholar
  5. Alarcon EI, Vulesevic B, Argawal A, Ross A, Bejjani P, Podrebarac J, Ravichandran R, Phopase J, Suuronen EJ, Griffith M (2016) Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale 8:6484–6489. doi: 10.1039/C6NR01339B CrossRefPubMedGoogle Scholar
  6. Alarifi S, Ali D, Alkahtani S et al (2013) Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide Nanoparticles. Int J Nanomedicine 8:983e993. doi: 10.2147/IJN.S42028 Google Scholar
  7. American Technion Society (2015) “Exposure to nanoparticles may threaten heart health.” ScienceDaily. ScienceDaily, 8 January 2015. www.sciencedaily.com/releases/2015/01/150108141317.htm
  8. Arefian, Z, Pishbin, F, Negahdary, M, Ajdary, M (2015) Potential toxic effects of Zirconia Oxide Nanoparticles on liver and kidney factors. Biomed Res 2015 26(1):89–97. ISSN 0970-938XGoogle Scholar
  9. Armand L, Tarantini A, Beal D, Biola-Clier M, Bobyk L, Sorieul S, Pernet-Gallay K, Marie-Desvergne C, Lynch I, Herlin-Boime N, Carriere M (2016) Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents.Nanotoxicology 10(7):913–923. doi:  10.3109/17435390.2016.1141338. Epub 2016 Feb 22
  10. Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S (2011) Comparison of the toxicity of silver, gold and platinum Nanoparticles indeveloping zebrafish embryos. Nanotoxicology 5:43e54. doi: 10.3109/17435390.2010.489207 CrossRefGoogle Scholar
  11. Bakand S, Hayes A (2016) Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int J Mol Sci 17(6). pii: E929. doi:  10.3390/ijms17060929. Review
  12. Balaji S, Mandal BK, Shivendu R, Nandita D, Ramalingam C (2017) Nano-zirconia – evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol 170:125–133. doi: 10.1016/j.jphotobiol.2017.04.004 CrossRefGoogle Scholar
  13. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17(5):387–395CrossRefPubMedGoogle Scholar
  14. Becaro AA, Jonsson CM, Puti FC, Siqueira MC, Mattoso LHC, Correa DS, Ferreira MD (2015) Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environ Nanotech Monit Manag 3:22–29. doi: 10.1016/j.enmm.2014.11.002 Google Scholar
  15. Blazer-Yost BL, Banga A, Amos A, Chernoff E, Lai X, Li C, Mitra S, Witzmann FA (2011) Effect of carbon Nanoparticles on renal epithelial cell structure, barrier function, and protein expression. Nanotoxicology 5(3):354–371. doi: 10.3109/17435390.2010.514076 CrossRefPubMedGoogle Scholar
  16. Blinova I, Niskanen J, Kajankari P, Kanarbik L, Käkinen A, Tenhu H, Penttinen OP, Kahru A (2013) Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ Sci Pollut Res Int 20(5):3456–3463. doi: 10.1007/s11356-012-1290-5 CrossRefPubMedGoogle Scholar
  17. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870CrossRefPubMedGoogle Scholar
  18. Bowman DM, van Calster G, Steffi F (2010) Nanomaterials and regulation of cosmetics. Nat Nanotechnol 5(2):92CrossRefPubMedGoogle Scholar
  19. Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71. doi: 10.1116/1.2815690 CrossRefPubMedGoogle Scholar
  20. Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K et al (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro 27:330e338. doi: 10.1016/j.tiv.2012.08.021 CrossRefGoogle Scholar
  21. Chen D, Huang F, Cheng YB, Caruso RA (2009) Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv Mater 21:2206–2210. doi: 10.1002/adma.200802603 CrossRefGoogle Scholar
  22. Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5(2):851–873CrossRefPubMedPubMedCentralGoogle Scholar
  23. Choi O, Deng KK, Kim N-J, Ross L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12):3066–3074CrossRefPubMedGoogle Scholar
  24. Chueh PJ, Liang RY, Lee YH, Zeng ZM, Chuang SM (2014) Differential cytotoxic effects of gold Nanoparticles in different mammalian cell lines. J Hazard Mater 264:303–312. doi: 10.1016/j.jhazmat.2013.11.031 CrossRefPubMedGoogle Scholar
  25. Coradeghini R, Gioria S, García CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217(3):205–216. doi:  10.1016/j.toxlet.2012.11.022. Epub 2012 Dec 13
  26. Dalai S, Iswarya V, Bhuvaneshwari M, Pakrashi S, Chandrasekaran N, Mukherjee A (2014) Different modes of TiO2 uptake by Ceriodaphnia dubia: Relevance to toxicity and bioaccumulation. Aquat Toxicol 152:139–146. doi: 10.1016/j.aquatox.2014.04.002 CrossRefPubMedGoogle Scholar
  27. Dasgupta N, Shivendu R, Chidambaram R (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett. doi: 10.1007/s10311-017-0648-9
  28. Dasgupta N, Shivendu R, Shraddha M, Ashutosh K, Chidambaram R (2016) Fabrication of food grade Vitamin E nanoemulsion by low energy approach: characterization and its application. Int J Food Prop 19(3):700–708. doi: 10.1080/10942912.2015.1042587 CrossRefGoogle Scholar
  29. Descotes, J. 2004. Immunotoxicology of drugs and chemicals: an experimental and clinical approach. Elsevier, Amsterdam. 1: 1–398. 978-0-444-51093-8Google Scholar
  30. Dikio ED (2011) Morphological characterization of soot from the atmospheric combustion of kerosene. E-J Chem 8:1068–1073. http://dx.doi.org/10.1155/2011/323872 CrossRefGoogle Scholar
  31. Dikio D, Bixa N (2011) Carbon nanotubes synthesis by catalytic decomposition of ethyne using Fe/Ni catalyst on aluminium oxide support. Int J Appl Chem 7:35–42. ISSN 0973-1792Google Scholar
  32. Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A (2013) Pulmonary toxicity of carbon nanotubes and asbestos – similarities and differences. Adv Drug Deliv Rev 65(15):2078–2086. doi: 10.1016/j.addr.2013.07.014 CrossRefPubMedGoogle Scholar
  33. Dönmez Güngüneş Ç, Şeker Ş, Elçin AE, Elçin YM (2016) A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles. Drug Chem Toxicol 18:1–13. [Epub ahead of print]Google Scholar
  34. Drobne D (2007) Nanotoxicology for safe and sustainable nanotechnology. Arh Hig Rada Toksikol 58:471–478CrossRefPubMedGoogle Scholar
  35. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24. doi: 10.1016/j.jcis.2011.07.017 CrossRefPubMedGoogle Scholar
  36. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134(1):151–160CrossRefPubMedGoogle Scholar
  37. Eom H, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187:77e83. doi: 10.1016/j.toxlet.2009.01.028 CrossRefGoogle Scholar
  38. Faedmaleki F, Shirazi FH, Salarian AA, Ashtiani HA, Rastegara H (2014) Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran J Pharm Res 13(1): 235–242. PMCID: PMC3985257Google Scholar
  39. Fahmy B, Cormier SA (2009) Copper oxides nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23:1365e1371. doi: 10.1016/j.tiv.2009.08.005 CrossRefGoogle Scholar
  40. Fangli Y, Peng H, Chunlei Y, Shulan H, Jinlin L (2003) Preparation and properties of zinc oxide Nanoparticles coated with zinc aluminate. J Mater Chem 13:634–637. doi: 10.1039/B208346A CrossRefGoogle Scholar
  41. Fujimori T, Morelos-Gómez A, Zhu Z, Muramatsu H, Futamura R, Urita K, Terrones M, Hayashi T, Endo M, Hong SY, Choi YC, Tománek D, Katsumi K (2013) Conducting linear chains of sulphur inside carbon nanotubes. Nature Commun 4:2162Google Scholar
  42. Geiser M et al (2005) Ultrafine particles cross cellular membranes by Nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560. 10.1289/ehp.8006. 16263511. 1310918. doi:  10.1289/ehp.8006
  43. Gulati N, Gupta H (2012) Two faces of carbon nanotube: toxicities and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst 29:65e88. doi: 10.1615/CritRevTherDrugCarrierSyst.v29.i1.20 CrossRefGoogle Scholar
  44. Guo D, Bi H, Liu B, Wu Q, Wang D, Cui Y (2013) Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol In Vitro 27:731e738. doi: 10.1016/j.tiv.2012.12.001 Google Scholar
  45. Hellstrand E et al (2009) Complete high-density lipoproteins in NP corona. FEBS J 276:3372–3381. doi: 10.1111/j.1742-4658.2009.07062.x CrossRefPubMedGoogle Scholar
  46. Holsapple MP et al (2005) Research strategies for safety evaluation of nanomaterials, Part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88(1):12–17. 16120754. doi:  10.1093/toxsci/kfi293
  47. Huk A, Izak-Nau E, Yamani N, Uggerud H, Vadset M, Zasonska B, Duschl A, Dusinska M (2015) Impact of nanosilver on various DNA lesions and HPRT gene mutations – effects of charge and surface coating. Part Fibre Toxicol 12, 1(1). doi: 10.1186/s12989-015-0100-x
  48. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229–252. doi: 10.1186/1556-276X-9-229 CrossRefPubMedPubMedCentralGoogle Scholar
  49. ISO. ISO/TR 12885 (2008) Nanotechnologies—Health and Safety Practices in Occupational Settings Relevant to Nanotechnologies, 1st ed.; the International Organization for Standardization: Geneva, Switzerland.Google Scholar
  50. ISO. ISO/TR 13121 (2011) Nanotechnologies—Nanomaterial Risk Evaluation, 1st ed.; the International Organization for Standardization: Geneva, Switzerland.Google Scholar
  51. Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A (2014) Size-Dependent Toxicity of Silver Nanoparticles to Bacteria, Yeast, Algae, Crustaceans and Mammalian Cells In Vitro. PLoS One 9(7):e102108. http://dx.doi.org/10.1371/journal.pone.0102108 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jain A, Shivendu R, Nandita D, Chidambaram R (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2016.1160363
  53. Janardan S, Suman P, Ragul G, Anjaneyulu U, Shivendu R, Dgupta N, Ramalingam C, Sasikumar S, Vijayakrishna K, Sivaramakrishna A (2016) Assessment on antibacterial activity of nanosized silica derived from hypercoordinated silicon(IV) precursors. RSC Adv 6:66394–66406. doi: 10.1039/C6RA12189F CrossRefGoogle Scholar
  54. Jiménez JA, Madsen OS (2003) A simple formula to estimate settling velocity of natural sediments. J Waterw Port Coast Ocean Eng 129(2):70–78CrossRefGoogle Scholar
  55. Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size-dependent toxicity of metal oxide particlesda comparison between nano- and micrometer size. Toxicol Lett 188:112e118. doi: 10.1016/j.toxlet.2009.03.014 CrossRefGoogle Scholar
  56. Kim TH, Jiang HH, Youn YS, Park CW, Tak KK, Lee S, Kim H, Jon S, Chen X, Lee KC (2011) Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int J Pharm 403(1–2):285–291CrossRefPubMedGoogle Scholar
  57. Kim IY, Joachim E, Choi H, Kim K (2015) Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine 11(6):1407–1416. doi:  10.1016/j.nano.2015.03.004. Epub 2015 Mar 25
  58. Kovrižnych JA, Sotníková R, Zeljenková D, Rollerová E, Szabová E, Wimmerová S (2013) Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages – comparative study. Interdiscip Toxicol 6(2):67–73. doi: 10.2478/intox-2013-0012 PubMedPubMedCentralGoogle Scholar
  59. Kumar AA, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872e1881. http://dx.doi.org/10.1371/journal.pone.0110247 CrossRefGoogle Scholar
  60. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J,Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO alizarin red S nanoconjugates in. Nano Lett 10(7):2296–2302Google Scholar
  61. Lei R, Wu C, Yang B et al (2008) Integrated metabolomicanalysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 232:292e301. doi: 10.1016/j.taap.2008.06.026 CrossRefGoogle Scholar
  62. Li JJ, Hartono D, Ong C, Bay B, Yung LL (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31:5996e6003. doi: 10.1016/j.biomaterials.2010.04.014 Google Scholar
  63. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2002) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460CrossRefGoogle Scholar
  64. Lopes I, Ribeiro R, Antunes FE, Rocha-Santos TAP, Rasteiro MG, Soares AMVM, Gonçalves F, Pereira R (2012) Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria Vibrio fischeri and Salmonella typhimurium. Ecotoxicology 21(3):637–648CrossRefPubMedGoogle Scholar
  65. Lorenz C, Tiede K, Tear S, Boxall A, Von Goetz N, Hungerbühler K (2010) Imaging and characterization of engineered nanoparticles in sunscreens by electron microscopy, under wet and dry conditions. Int J Occup Environ Health 16:406–408. doi: 10.1179/107735210799160101 CrossRefPubMedGoogle Scholar
  66. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENanoparticles) and plants: Phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061. doi: 10.1016/j.scitotenv.2010.03.031 CrossRefPubMedGoogle Scholar
  67. Ma JY, Zhao H, Mercer RR, Barger M, Rao M, Meighan T, Schwegler-Berry D, Castranova V, Ma JK (2011) Cerium oxide NP induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotechnology 5:312e325. doi: 10.3109/17435390.2010.519835 Google Scholar
  68. Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Shivendu R, Nandita D (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B Biol 166:252–258. doi: 10.1016/j.jphotobiol.2016.12.008 CrossRefGoogle Scholar
  69. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of NP-induced oxidative stress and toxicity. Biomed Res Int 2013(2013):Article ID 942916, 15. http://dx.doi.org/10.1155/2013/942916
  70. Marcone GPS, Oliveira ÁC, Almeida G, Umbuzeiro GA, Jardim WF (2012) Ecotoxicity of TiO2 to Daphnia similis under irradiation. J Hazard Mater 211–212:436–442CrossRefPubMedGoogle Scholar
  71. Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM (2015) Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem 15(16):1596–1604CrossRefPubMedGoogle Scholar
  72. Milić M, Leitinger G, Pavičić I, Avdičević MZ, Dobrović S, Goessler M, Vrček IV (2015) Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol 35(6):581–592. doi: 10.1002/jat.3081 CrossRefPubMedGoogle Scholar
  73. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239. doi: 10.1021/es202995d CrossRefPubMedGoogle Scholar
  74. Mitchell LA, Lauer FT, Burchiel SW, McDonald JD (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4:451–456. doi: 10.1038/nnano.2009.151 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Mohammed Sadiq I, Swayamprava D, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74(5):1180–1187CrossRefPubMedGoogle Scholar
  76. Mukherjee SG, O’Claonadh N, Casey A, Chambers G (2012) Comparative in vitro cytotoxicity study of silver NP on two mammalian cell lines. Toxicol In Vitro 26(2):238–251. doi: 10.1016/j.tiv.2011.12.004 CrossRefPubMedGoogle Scholar
  77. Nel A (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRefPubMedGoogle Scholar
  78. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22CrossRefPubMedGoogle Scholar
  79. Oberdorster G, Sharp Z, Atudorei A, Elder A, Gelein G, Luntsm A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxic Environ Health A 65:1531–1543CrossRefGoogle Scholar
  80. Oberdörster G et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi: 10.1186/1743-8977-2-8. PMC 1260029. PMID 16209704
  81. Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant. Environ Toxicol Chem 32(4):902–907CrossRefPubMedGoogle Scholar
  82. Pakrashi S, Dalai S, Sabat D, Singh S, Chandrasekaran N, Mukherjee A (2011) Cytotoxicity of Al2O3 nanoparticles at low exposure levels to a freshwater bacterial isolate. Chem Res Toxicol 24:1899–1904. doi: 10.1021/tx200244g CrossRefPubMedGoogle Scholar
  83. Papageorgiou I, Brown C, Schins R et al (2007) The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 28(19):2946e2958. doi: 10.1016/j.biomaterials.2007.02.034 CrossRefGoogle Scholar
  84. Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver Nanoparticles. Environ Toxicol Pharmacol 30(2):162–168. doi: 10.1016/j.etap.2010.05.004 CrossRefPubMedGoogle Scholar
  85. Pati R, Das I, Mehta RK, Sahu R, Sonawane A (2016) Zinc-Oxide nanoparticles exhibit genotoxic, clastogenic, cytotoxic and actin depolymerization effects by inducing oxidative stress responses in macrophages and adult mice. Toxicol Sci 150(2):454–472. doi: 10.1093/toxsci/kfw010 CrossRefPubMedGoogle Scholar
  86. Petrick L, Rosenblat M, Paland N, Aviram M (2014) Silicon dioxide nanoparticles increase macrophage atherogenicity: stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation. Environ Toxicol 31:713. doi: 10.1002/tox.22084 CrossRefPubMedGoogle Scholar
  87. Poma A, Colafarina S, Fontecchio G, Chichiriccò G (2014) Transgenerational effects of NMs. In Nanomaterials, impacts on cell biology and medicine. Springer Science and Business Media,Dordrecht. 811:235–254. 978-94-017-8739-0Google Scholar
  88. Porter AE et al (2007) Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ Sci Technol 41(8):3012–3017. doi: 10.1021/es062541f CrossRefPubMedGoogle Scholar
  89. Radic S (2015) Biophysical interaction between nanoparticles and biomolecules. All Dissertations. Paper 1517Google Scholar
  90. Radoslav S et al (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300(5619):615–618. doi:10.1126/science.1078192. PMID 12714738CrossRefGoogle Scholar
  91. Raghunathan VK, Devey M, Hawkins S et al (2013) Influence of particle size and reactive oxygen species on cobalt chrome NP-mediated genotoxicity. Biomaterials 34:3559e3570. doi: 10.1016/j.biomaterials.2013.01.085 CrossRefGoogle Scholar
  92. Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944. http://nopr.niscair.res.in/bitstream/123456789/17153/1/IJEB%2041(9)%20935-944.pdf PubMedGoogle Scholar
  93. Ramachandran G, Ostraat M, Evans DE, Methner MM, O’Shaughnessy P, D’Arcy J, Geraci CL, Stevenson E, Maynard A, Rickabaugh K (2011) A strategy for assessing workplace exposures to nanomaterials. J Occup Environ Hyg 8:673–685. doi: 10.1080/15459624.2011.623223 CrossRefPubMedGoogle Scholar
  94. Ranjan S, Chidambaram R (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 14(4):487–494. doi: 10.1007/s10311-016-0586-y CrossRefGoogle Scholar
  95. Ranjan S, Nandita D, Srivastava P, Chidambaram R (2016) A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. J Photochem Photobiol B Biol 161:472–481. doi: 10.1016/j.jphotobiol.2016.06.015 CrossRefGoogle Scholar
  96. Royal Society and Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. ISBN 0 85403 604 0Google Scholar
  97. Ryman-Rasmussen JP et al (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91(1):159–165. doi: 10.1093/toxsci/kfj122 CrossRefPubMedGoogle Scholar
  98. Sai KT, Mandal BK, Shivendu R, Nandita D (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168. doi: 10.1016/j.jphotobiol.2016.11.017 CrossRefGoogle Scholar
  99. Sambale F, Wagner S, Stahl F, Khaydarov RR, Scheper T, Bahnemann D (2015) Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J Nanomater 2015(2015):9. Article ID 136765. http://dx.doi.org/10.1155/2015/136765
  100. Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3:2461–2464CrossRefPubMedGoogle Scholar
  101. Saunders AM, Larsen P, Nielsen PH (2013) Comparison of nutrient-removing microbial communities in activated sludge from full-scale MBRs and conventional plants. Water Sci Technol 68(2):366CrossRefPubMedGoogle Scholar
  102. Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9:495–509CrossRefPubMedGoogle Scholar
  103. Seabra AB, Durán N (2015) Nanotoxicology of metal oxide nanoparticles. Metals 5(2):934–975. doi: 10.3390/met5020934 CrossRefGoogle Scholar
  104. Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5. doi: 10.1186/1477-3155-12-5 CrossRefGoogle Scholar
  105. Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852e870. doi: 10.1007/s10495-012-0705-6 CrossRefGoogle Scholar
  106. Shenava A, Sharma M, Shetty V, Shenoy S (2015) Silver nanoparticles: a boon in clinical medicine. J Oral Res Rev 7:35–38CrossRefGoogle Scholar
  107. Shukla A, Dasgupta N, Shivendu R, Singh S, Chidambaram R (2017) Nanotechnology towards prevention of anemia and osteoporosis: from concept to market. Biotechnol Biotechnol Equip. doi: 10.1080/13102818.2017.1335615
  108. Siddiqui MA, Ahamed M, Ahmad J et al (2012) Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food Chem Toxicol 50:641e647. doi: 10.1016/j.fct.2012.01.017 CrossRefGoogle Scholar
  109. Silvestre C, Duraccio D, Sossio C (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782. doi: 10.1016/j.progpolymsci.2011.02.003 CrossRefGoogle Scholar
  110. Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22. doi: 10.1186/1743-8977-7-22 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Sohn EK, Johari SA, Kim TG, Kim JK, Kim E, Lee JH, Chung YS, Yu IJ (2015) Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int 2015(2015):12. Article ID 893049. http://dx.doi.org/10.1155/2015/893049
  112. Song L, Connolly M, Fernández-Cruz ML, Vijver MG, Fernández M, Conde E, de Snoo GR, Peijnenburg WJ, Navas JM (2014) Species-specific toxicity of copper Nanoparticles among mammalian and piscine cell lines. Nanotoxicology 8(4):383–393. doi: 10.3109/17435390.2013.790997 CrossRefPubMedGoogle Scholar
  113. Stampfl A, Maier M, Radykewicz R, Reitmeir P, Göttlicher M, Niessner R (2011) Langendorff heart: a model system to study cardiovascular effects of engineered nanoparticles. ACS Nano 5(7):5345–5353. doi: 10.1021/nn200801c CrossRefPubMedGoogle Scholar
  114. Study Sizes up Nanomaterial Toxicity (2008) Chemical & Engineering News 86:35. doi: 10.1021/tx800064jGoogle Scholar
  115. Tavares AM, Louro H, Antunes S, Quarré S, Simar S, De Temmerman PJ, Verleysen E, Mast J, Jensen KA, Norppa H, Nesslany F, Silva MJ (2014) Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro 28(1):60–69CrossRefPubMedGoogle Scholar
  116. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO nanoparticles for Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40(19):6151–6156CrossRefPubMedGoogle Scholar
  117. Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111(9):1202–1218. doi: 10.1289/ehp.5999 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Tran DT, Salmon R (2010) Preparation and properties of zinc oxide Nanoparticles coated with zinc aluminate. Australas J Dermatol 52:1–6. doi: 10.1039/B208346A CrossRefPubMedGoogle Scholar
  119. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780CrossRefPubMedPubMedCentralGoogle Scholar
  120. Walia N, Dasgupta N, Shivendu R, Chen L, Chidambaram R (2017) Fish oil based Vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason Sonochem 39:623–635. doi: 10.1016/j.ultsonch.2017.05.021 CrossRefGoogle Scholar
  121. Warheit D, Hoke R, Finlay C, Donner E, Reed K, Sayes C (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171(3):99–110CrossRefPubMedGoogle Scholar
  122. Wiesenthal A, Hunter L, Wang S, Wickliffe J, Wilkerson M (2011) Nanoparticles: small and mighty. Int J Dermatol 50:247–254. doi: 10.1111/j.1365-4632.2010.04815.x CrossRefPubMedGoogle Scholar
  123. Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide Nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121e2134. doi: 10.1021/nn800511k Google Scholar
  124. Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, Yang C, Wu A, Zhao J (2013) Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS One 8(8):e70618. http://dx.doi.org/10.1371/journal.pone.0070618 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Yoo KC, Yoon CH, Kwon D, Hyun KH, Woo SJ, Kim RK et al (2012) Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated fas upregulation and bax activation. Int J Nanomedicine 7:1203e1214. doi: 10.2147/IJN.S28647 Google Scholar
  126. Yu L, Xi J (2012) CeO2 nanoparticles improved Pt-based catalysts for direct alcohol fuel cells. Int J Hydrog Energy 37(21):15938–15947. doi: 10.1016/j.ijhydene.2012.08.063 CrossRefGoogle Scholar
  127. Yue Y, Behra R, Sigg L, Fernández Freire P, Pillai S, Schirmer K (2015) Toxicity of silver Nanoparticles to a fish gill cell line: role of medium composition. Nanotoxicology 9(1):54–63. doi: 10.3109/17435390.2014.889236 CrossRefPubMedGoogle Scholar
  128. Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209–215CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Babita Kaundal
    • 1
  • Swayamprava Dalai
    • 1
  • Subhasree Roy Choudhury
    • 1
  1. 1.Institute of Nano Science and TechnologyMohaliIndia

Personalised recommendations