How Do Hybrid Electric Vehicle Drivers Acquire Ecodriving Strategy Knowledge?

  • Thomas Franke
  • Matthias G. Arend
  • Neville A. Stanton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10276)


Hybrid electric vehicles (HEVs) have the potential to accomplish high energy efficiency (i.e., low fuel consumption) given that drivers apply effective ecodriving control strategies (i.e., ecodriving behavior). However, HEVs have a relatively complex powertrain and therefore require a considerable knowledge acquisition process to enable optimal ecodriving behavior. The objective of the present research was to examine the acquisition of ecodriving strategy knowledge in HEV drivers who are successful in achieving a relatively high energy efficiency. To this end, we recruited 39 HEV drivers with above-average fuel efficiencies and collected interview data on the ecodriving strategy acquisition process. Drivers reported the acquisition of different types of knowledge as important for ecodriving, namely specific strategy knowledge and general technical system knowledge. They acquired this knowledge both with system-interaction (e.g., actively testing specific strategies, continuous monitoring of energy consumption) and without system-interaction (e.g., internet forums, consulting experts). This learning process took drivers on average 6.4 months or 10062 km. The results show the high diversity of the means that HEV drivers use to develop their ecodriving knowledge and the considerable time it takes HEV drivers to develop their ecodriving strategies.


Hybrid electric vehicles Ecodriving Strategy knowledge Learning process Driving behavior 



This research was partly supported by a DAAD grant to the first author and an ERASMUS + grant to the second author. We gratefully thank Prof. Dr. Josef Krems for providing parts of the research infrastructure.


  1. 1.
    Al-Alawi, B.M., Bradley, T.H.: Review of hybrid, plug-in hybrid, and electric vehicle market modeling studies. Renewable Sustain. Energy Rev. 21, 190–203 (2013). doi: 10.1016/j.rser.2012.12.048 CrossRefGoogle Scholar
  2. 2.
    Arend, M.G., Franke, T.: The role of interaction patterns with hybrid electric vehicle eco-features for drivers’ ecodriving performance. Hum. Factors (2016). doi: 10.1177/0018720816670819 Google Scholar
  3. 3.
    Barkenbus, J.N.: Eco-driving: An overlooked climate change initiative. Energy Policy 38, 762–769 (2010). doi: 10.1016/j.enpol.2009.10.021 CrossRefGoogle Scholar
  4. 4.
    Bitsche, O., Gutmann, G.: Systems for hybrid cars. J. Power Sources 127, 8–15 (2004). doi: 10.1016/j.jpowsour.2003.09.003 CrossRefGoogle Scholar
  5. 5.
    Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101 (2006). doi: 10.1191/1478088706qp063oa CrossRefGoogle Scholar
  6. 6.
    Cocron, P., Bühler, F., Neumann, I., Franke, T., Krems, J.F., Schwalm, M., Keinath, A.: Methods of evaluating electric vehicles from a user’s perspective–the MINI E field trial in Berlin. IET Intel. Transport Syst. 5, 127–133 (2011). doi: 10.1049/iet-its.2010.0126 CrossRefGoogle Scholar
  7. 7.
    Davis, S.J., Caldeira, K., Matthews, H.D.: Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010). doi: 10.1126/science.1188566 CrossRefGoogle Scholar
  8. 8.
    Dogan, E., Steg, L., Delhomme, P.: The influence of multiple goals on driving behavior: the case of safety, time saving, and fuel saving. Accid. Anal. Prev. 43, 1635–1643 (2011). doi: 10.1016/j.aap.2011.03.002 CrossRefGoogle Scholar
  9. 9.
    Franke, T., Arend, M.G., McIlroy, R.C., Stanton, N.A.: Ecodriving in hybrid electric vehicles–exploring challenges for user-energy interaction. Appl. Ergon. 55, 33–45 (2016). doi: 10.1016/j.apergo.2016.01.007 CrossRefGoogle Scholar
  10. 10.
    Franke, T., Arend, M.G., McIlroy, R.C., Stanton, N.A.: What drives ecodriving? hybrid electric vehicle drivers’ goals and motivations to perform energy efficient driving behaviors. In Stanton, N.A., Landry, S., Di Bucchianico, G., Vallicelli, A. (eds.) Advances in Human Aspects of Transportation. AISC, vol. 484, pp. 451–461. Springer, London (2016b). doi: 10.1007/978-3-319-41682-3_38
  11. 11.
    Fuller, R.: Motivational determinants of control in driving task. In: Cacciabue, P.C. (ed.) Modelling Driver Behaviour in Automotive Environments: Critical Issues in Driver Interactions with Intelligent Transport Systems, pp. 165–188. Springer, London (2007). doi: 10.1007/978-1-84628-618-6_10
  12. 12.
    Fuller, R.: Driver control theory: from task difficulty homeostasis to risk allostasis. In: Handbook of Traffic Psychology, pp. 208–232. Elsevier, Amsterdam (2011). doi: 10.1016/B978-0-12-381984-0.10002-5
  13. 13.
    Hanson, M.A.: Green ergonomics: challenges and opportunities. Ergonomics 56, 399–408 (2013). doi: 10.1080/00140139.2012.751457 CrossRefGoogle Scholar
  14. 14.
    Jamson, S.L., Hibberd, D.L., Jamson, A.H.: Drivers’ ability to learn eco-driving skills; effects on fuel efficient and safe driving behaviour. Transp. Res. Part C: Emerg. Technol. 58, 657–668 (2015). doi: 10.1016/j.trc.2015.02.004 CrossRefGoogle Scholar
  15. 15.
    Jamson, A.H., Hibberd, D.L., Merat, N.: Interface design considerations for an in-vehicle eco-driving assistance system. Transp. Res. Part C: Emerg. Technol. 58, 642–656 (2015). doi: 10.1016/j.trc.2014.12.008 CrossRefGoogle Scholar
  16. 16.
    Kuriyama, M., Yamamoto, S., Miyatake, M.: Theoretical study on eco-driving technique for an electric vehicle with dynamic programming. In: Proceedings of the 2010 International Conference on Electrical Machines and Systems. pp. 2026–2030. IEEE Press, New York (2010). doi: 10.11142/jicems.2012.1.1.114
  17. 17.
    Lai, W.: The effects of eco-driving motivation, knowledge and reward intervention on fuel efficiency. Transp. Res. Part D: Transport Environ. 34, 155–160 (2015). doi: 10.1016/j.trd.2014.10.003 CrossRefGoogle Scholar
  18. 18.
    Lauper, E., Moser, S., Fischer, M., Matthies, E., Kaufmann-Hayoz, R.: Psychological predictors of eco-driving: a longitudinal study. Transp. Res. Part F: Traffic Psychol. Behav. 33, 27–37 (2015). doi: 10.1016/j.trf.2015.06.005 CrossRefGoogle Scholar
  19. 19.
    McIlroy, R.C., Stanton, N.A.: A decision ladder analysis of eco-driving: the first step towards fuel-efficient driving behaviour. Ergonomics 58, 866–882 (2015). doi: 10.1080/00140139.2014.997807 CrossRefGoogle Scholar
  20. 20.
    McIlroy, R.C., Stanton, N.A.: What do people know about eco-driving? Ergonomics (2016). doi: 10.1080/00140139.2016.1227092
  21. 21.
    McIlroy, R.C., Stanton, N.A., Harvey, C.: Getting drivers to do the right thing: a review of the potential for safely reducing energy consumption through design. IET Intell. Transport Syst. 8, 388–397 (2014). doi: 10.1049/iet-its.2012.0190 CrossRefGoogle Scholar
  22. 22.
    Neumann, I., Franke, T., Cocron, P., Bühler, F., Krems, J.F.: Eco-driving strategies in battery electric vehicle use – how do drivers adapt over time? IET Intell. Transport Syst. 9, 746–753 (2015). doi: 10.1049/iet-its.2014.0221 CrossRefGoogle Scholar
  23. 23.
    Pampel, S.M., Jamson, S.L., Hibberd, D.L., Barnard, Y.: How I reduce fuel consumption: An experimental study on mental models of eco-driving. Transp. Res. Part C: Emerging Technol. 58, 669–680 (2015). doi: 10.1016/j.trc.2015.02.005 CrossRefGoogle Scholar
  24. 24.
    Pichelmann, S., Franke, T., Krems, J.F.: The timeframe of adaptation to electric vehicle range. In: Kurosu, M. (ed.) HCI 2013. LNCS, vol. 8005, pp. 612–620. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39262-7_69 CrossRefGoogle Scholar
  25. 25.
    Sivak, M., Schoettle, B.: Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy. Transp. Policy 22, 96–99 (2012). doi: 10.1016/j.tranpol.2012.05.010 CrossRefGoogle Scholar
  26. 26.
    Stillwater, T., Kurani, K.S.: Drivers discuss ecodriving feedback: goal setting, framing, and anchoring motivate new behaviors. Transp. Res. Part F: Traffic Psychol. Behav. 19, 85–96 (2013). doi: 10.1016/j.trf.2013.03.007 CrossRefGoogle Scholar
  27. 27.
    Summala, H.: Towards understanding motivational and emotional factors in driver behaviour: comfort through satisficing. In: Cacciabue, P.C. (ed.) Modelling Driver Behaviour in Automotive Environments, pp. 189–207. Springer, London (2007). doi: 10.1007/978-1-84628-618-6_11
  28. 28.
    Thatcher, A.: Green ergonomics: definition and scope. Ergonomics 56, 389–398 (2013). doi: 10.1080/00140139.2012.718371 CrossRefGoogle Scholar
  29. 29.
    U.S. Department of Energy: U.S. HEV Sales by Model.
  30. 30.
    Young, M.S., Birrell, S.A., Stanton, N.A.: Safe driving in a green world: a review of driver performance benchmarks and technologies to support “smart” driving. Appl. Ergon. 42, 533–539 (2011). doi: 10.1016/j.apergo.2010.08.012 CrossRefGoogle Scholar
  31. 31.
    Walsh, C., Carroll, S., Eastlake, A., Blythe, P.: Electric vehicle driving style and duty variation performance study (2010).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thomas Franke
    • 1
  • Matthias G. Arend
    • 2
  • Neville A. Stanton
    • 3
  1. 1.Institute for Multimedia and Interactive Systems, Engineering Psychology and Cognitive, ErgonomicsUniversität zu LübeckLübeckGermany
  2. 2.Department of Psychology, Cognitive and Engineering PsychologyChemnitz University of TechnologyChemnitzGermany
  3. 3.Transportation Research Group, Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations